Bharati Vidyapeeth University College of Engineering Department of Chemical Engineering CBCS Structure: 2014- 2015 Sem VII and Sem VIII

Bharati Vidyapeeth University Faculty of Engineering and Technology Programme: B. Tech. (Chemical) - Semester VII - 2014 Course

			hing Sc ours/wo			Examination Scheme (Marks)					Credit			
Sr. No.	Subject					C	ontinuous As	sessment						
		L	P/D	Т	End Semester Examination	Unit Test	Attendance	Assignments	TW/O	TW/P	Total	Theory	P/D	Total
1	Elective-III	3	2	-	60	20	10	10	50	-	150	3	1	4
2	Chemical Process Equipment Design– II	3	2	-	60	20	10	10	50	-	150	3	1	4
3	Plant Utilities and Process Safety	3	-	-	60	20	10	10	-	-	100	3	-	3
4	Process Dynamics and Control	3	2	-	60	20	10	10	-	50	150	3	1	4
5	Multiphase Reaction Engineering	3	-	-	60	20	10	10	-	-	100	3	-	3
6	Industrial Training	-	-	-	-	-	-	-	50	-	50	-	3	3
7	Project [Stage I]	-	4	-	_	-	-	-	100	-	100	-	4	4
	Total	15	10	-	300	100	50	50	250	50	800	15	10	25

Bharati Vidyapeeth University Faculty of Engineering and Technology Programme: B. Tech. (Chemical) - Semester VIII - 2014 Course

			hing Sc ours/we]	Examination S	Scheme (Marks	5)			Credit		
Sr. No.	Subject					C	Continuous As	sessment						
		L	P/D	Т	End Semester Examination	Unit Test	Attendance	Assignments	TW/O	TW/P	Total	Theory	P/D	Total
8	Elective-IV	3	2	-	60	20	10	10	50	-	150	3	1	4
9	Plant Design, Project Engineering and Costing	3	2	-	60	20	10	10	50	-	150	3	1	4
10	Industrial Management	3	-	-	60	20	10	10	-	-	100	3	-	3
11	Chemical Process Modeling and Simulation	3	2	-	60	20	10	10	-	50	150	3	1	4
12	Seminar	-	-	2	-	-	-	-	50	-	50	2	-	2
13	Project [Stage II]	-	6	-	-	-	-	-	200	-	200	-	8	8
	Total	15	6	8	240	80	40	40	350	50	800	14	11	25

Total Credits

Semester VII : 25

Semester VIII : 25

Grand Total : 50

Elective-I	Elective-II
1. Combustion Engineering	1. Biofuel Technology
2. Advanced Material Science	2. Polymer Technology
3. Multiphase Flow	3. Food Technology
4. Rheology	4. Nanomaterials
Elective-III	Elective-VI
1. Petroleum Refinery Engineering	1. Hazardous Waste Management
2. Membrane Separation	2. Bio-separations
3. Fuel Cell Technology	3. Energy Engineering
4. Advanced Oxidation Processes	4. Green Technology

Bharati Vidyapeeth University College of Engineering Department of Chemical Engineering CBCS Syllabus: 2014-2015 Sem VII and Sem VIII

CHEMICAL PROCESS EQUIPMENT DESIGN-II

Designation: Professional Core

Course Pre-requisites:

Students should have basic knowledge of

Unit Operations involved in chemical engineering 1

Heat transfer and Mass transfer and Mechanical operation equipments. 2

TEACHIN	NG SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:
Lectures: 3 Hours/Week		End Semester Examination: 60 Marks	Theory: 03
Drawing :	2 Hour /Week	Unit Test: 20 Marks	Drawing: 01
Total	: 5Hours/Week	Continuous Assessment: 20 Marks	Total credits: 04
		Term work / practical:50 Marks	
		Total :150 Marks	

Course Outcomes:

After completion of the course, students would be able to

Design evaporator and crystallizers. 1.

2. Design Dryers and Filters.

Design different columns used in distillation/Absorption. 3.

Identify and design different packings used in packed columns. 4.

Calculate height of packing, column diameter in packed columns. 5.

Understand importance of process safety and Hazard Analysis. 6.

Topics covered

	Evaporators & Crystallizers	
	Classification of vaporizing equipment, evaporators such as kettle, thermosiphon, vertical, horizontal etc., Chemical evaporators, natural	
UNIT-I	circulation & forced circulation evaporators, the calculation of chemical evaporators, crystallizers, types of crystallizers, design considerations. Case	(06 Hours)
	studies on evaporators.	
UNIT-II	Filters & Dryers:	(06 Hours)

	Various types of filters like vacuum filters, pressure filters, centrifuges and				
	rotary drum filters, design of rotary drum filters, including design of drum,				
	shaft, bearing and drive system. Types of dryers, batch type dryers, continuous				
	dryers.				
	Tray Column Design				
LINIT III	Design of plate column- distillation columns, design variables in distillation,	(AC Hound)			
UNIT-II	design methods for binary systems, plate efficiency, approximate column	(06 Hours)			
	sizing, plate Contactors, plate hydraulic design.				
	Packed Column Design				
	Choices of packing, types of packing, packed bed height (distillation and				
UNIT-IV	absorption), HETP, HTU, NTU, Cornell's method, Onda's method, column	(06 Hours)			
	diameter, column internals, column auxiliaries.				
	Piping Design I				
	Definition and Application of Piping, Classification of pipe, Piping Material				
	Specifications, Manufacturing Method, Weight and Size Standards STD, Extra				
UNIT-V	Strong XS, Double Extra Strong XXS etc. Pressure Temperature Rating	(06 Hours)			
	System, Pipe Fittings, Types of Flanges, Types of Valves,				
	Piping Design II				
	Codes and Standards, Piping elements, Pipe Hydraulics and Sizing,				
	Mechanical Design, Fundamentals Piping Drawing, Basics Development of				
UNIT-VI	Plot Plan, Equipment and Piping Layout, Stress Analysis Static and Dynamic,	(06 Hours)			
	Selection and Design of Supports and Expansion Joints, Transient Fluid flow				
	Analysis. Friction Factor, Moody Diagram, Minor Losses in Piping, Equivalent				
	Length Method & Loss Coefficient Method,				
Assignme	ents				
1. V	Vrite a report on different evaporators and crystallizer				
2. Т	Types of Dryers and filters.				
	Designing of Distillation column.				
4. I	Designing of Absorption column.				
	Importance of piping design.				

6.	Pipe sizing and supports				
7.	Report on Equivalent Length Method & Loss Coefficient Method,				
8.	Solve old (last five years) question papers with reference to particular topic.				
9.	Prepare a model for any of the equipment				
10.	Prepare a report on advance equipments which are newly introduced in the current year.				
11.	Give fifteen minutes presentation (seminar) on particular topic and prepare a report.				
12.	Solve old (last ten years) GATE question papers with reference to design subject.				
13.	Group discussion on the recent advances in equipment design				
14.	Write a report on your visit to research and development laboratory of national/international repute.				
15.	Technical interview based on the knowledge of design				
In addi assigni	ition to these above stated assignments concerned faculty member may design his/her own ments				
Term	Work:				
Term v	work will consist of the Practicals and drawings listed below, out of which any eight are to be done by				
studen	ts. Any one drawing in Autocad.				
1.	Design and drawing of evaporator.				
2.	Design and drawing of crystallizer.				
3.	Design and drawing of rotary filter.				
4	Detailed design and drawing of piping layout.				
5.	Detailed design and drawing of spray dryer				
6.	Detailed design and drawing of distillation column.				
7.	Detailed design and drawing of absorption column				
8.	Study various packings.				
9.	Design and calculations of packed column.				
10.	Study the contains of stress analysis of pipes.				
11.	Detailed design and drawing of piping supports.				
Text B	Books/References:				
1.	Joshi. M.V, and Mahajani. V.V, "Process Equipment Design," 3rd Edn. Macmillan India Limited,				
	New Delhi, 1996				

2.	Bownell, L.E., and Young, E.M., "Process Equipment Design", Wiley Eastern, 1968.				
3.	Sinnott. R.K, Coulson & Richardson's, "Chemical Engineering", Volume 6, 3rd Edn., Butterworth				
	Heinemann, New Delhi, 1999.				
4.	Bhattacharya B C, Chemical Equipment Design , CBS publishers.				
5.	Dawande S D, "Process Equipment Design" DENETT publishers				
	I				
Syllab	Syllabus for Unit Test:				
Unit Test -I		UNIT – I ,II,III			
Unit Test -II		UNIT – IV,V,VI			

MULTIPHASE REACTION ENGINEERING

Designation: Professional Core

Course Pre-requisites:

Students should have basic knowledge of

- 1 Thermodynamics
- 2 Transport Processes

TEACHING SCHEME		EXAMINATION SCHEM	CREDITS ALLOTTED		
Lectures	: 3 Hours/Week	End Semester Examination	: 60 Marks	Theory: 03	
		Unit Test	: 20 Marks	Practical: 01	
		Continuous Assessment	: 20 Marks	Total credits: 04	
		Total	:100 Marks		

Course Outcomes:

After completion of the course students would be able to

1 Recognize the importance of multiphase reactors.

2 Determine chemical reaction equilibrium constant and rate controlling step for heterogeneous system.

3 Recognize the effect of system and operating parameters on the hydrodynamics of multiphase reactors.

4 Recognize the significance of mixing and determine extent of mixing in multiphase system

5 Determine the effect of system, geometric, and operating parameters on heat and mass transfer coefficients.

6 Enumerate the effect of hold up in the design of multiphase reactors

	Topics covered					
UNIT-I	Introduction to Multiphase Reactor EngineeringTypes, Classification, Application of Industrial Importance. Two case studies	(06 Hours)				
UNIT-II	Thermodynamics and kineticsNotable industrial heterogeneous systems and thermodynamic role. Applicationof equilibrium criteria to chemical reactions. The Gibbs energy change andequilibrium constant. Estimation of equilibrium constant for heterogeneoussystem by defining standard state of the phases involved. Determination of ratecontrolling step: intrinsic kinetics for heterogeneous systems	(06 Hours)				
UNIT-III	Hydrodynamic CharacteristicsHydrodynamic characteristics of different multiphase reactors: Mechanically	(06 Hours)				

	Agitated Contactors (MAC), Bubble Columns, Slurry Reactors, Fluidized Beds,					
	Loop Reactors and Modified Versions					
	Mixing Studies					
	Effect of geometrical, system, and operating parameters on phase mixing in					
UNIT-IV	⁷ multiphase reactors. Quantification of phase mixing. Development of a	(06 Hours)				
	mathematical model.					
	Heat Transfer and Mass Transfer Studies					
	Effect of geometrical, system, and operating parameters on heat transfer					
	coefficient in multiphase reactors. Quantification of heat transfer coefficient.					
	Application of correlations available to different multiphase reactors.					
UNIT-V		(06 Hours)				
	selection of suitable technique for a multiphase reactor. Effect of geometrical,					
	system, and operating parameters on mass transfer coefficient in multiphase					
	reactors. Quantification of mass transfer coefficient. Application of correlations					
	available to different multiphase reactors.					
	Design Aspects of Multiphase Reactors					
UNIT-V	rice and property france and up, made and real realized economic					
	extent of mixing, etc.					
Assignm	ants.					
	Enumerate any one industrial relevant multiphase system					
	Refer any one recently published article related to multiphase system and make present	ation				
	Estimate the power requirement for a given impeller					
4.	Visit to any chemical process industry to study atleast one multiphase system					
	List the pressure measurement tools available in the market					
	List and enumerate physical significance of the empirical correlations available in the literature to					
	estimate liquid dispersion coefficient.List and enumerate physical significance the empirical correlations available in the literature to					
	estimate mass transfer coefficient.					
	Refer any review article perati					
9.	Fechnical interview based on the knowledge of analytical techniques.					
10. I	List out all the principles of the analytical techniques.					
	Perform any one chromatographic technique.					
	Find out different types of proteins with structure.					
	Prepare a report on downstream processing.					
In addition	on to these above stated assignments concerned faculty member may design his/her ow	'n				

assign	assignments.					
Text E	Books/References:					
1	L. K. Doraiswamy and M	1. M. Sharma, "Heterogeneous Reactions", 2 nd Edition, Volume I and II.				
2	G. B. Tatterson, "Fluid N	Aixing and Gas Dispersion in Stirred Reactors", 10 th Edition, Academic				
	Press, London, 1994					
3	W. D. Deckwer, "Bubble Column Reactors", Cambridge University Press, New York, 2000					
4	DiazoKunji and O. Lev	enspiel, "Fluidization Engineering", 2nd Edition, Butterworth Heinemann,				
	1991.					
5	J. F. Devidson and Harris	son, "Fluidization", 10 th Edition, Academic Press, London, 1994				
Syllabus for Unit Test:						
Unit Test -I		UNIT – I ,II,III				
Unit Test -II UNIT – IV,V,VI						

PLANT UTILITIES AND PROCESS SAFETY

Designation: Professional Core

Course Pre-requisites:

Students should have knowledge of

1. Chemical Technology, Chemical Process Industries

TEA	CHIN	G SCHEME:	EXAMINATION SCHEM	<u>E:</u>	CREDITS A	LLOTTED:
Lect	ures	: 3 Hours/Week	End Semester Examination	: 60 Marks	Theory	: 03
			Unit Test	: 20 Marks	Total credits	: 03
			Continuous Assessment	: 20 Marks		
			Total	: 100 Marks		
Cou	rse Out	comes:				
Afte	r compl	etion of the course s	tudents will be able to			
1.	Identi	fy the common utili	ties required for Chemical Pla	int.		
2.	Expre	ess various types of	boilers and their selection.			
3.	Analy	ze the importance of	f insulation and air pressure in	n process.		
4.	Identi	fy and analyze the h	nazards.			
5.	Integ	tegrate the theoretical and practice knowledge to understand hazards activities.				
6.	6. Implement the safety designs and procedures.					
			Topics covered			
		Identification of	common plant utilities			
		Role and importance of pant utilities in chemical plants, Water, compressed				
UNI	T - I	air, steam, vacuum, refrigeration, venting, flaring and pollution abating.				(06 Hours)
		Water and its quality, storage and distribution for cooling and fire fighting,				
	Water resource ma		anagement.			
		Steam Generatio	n and Utilization			
		Steam generation and its application in chemical process plants, distribution				
UNI	T - II	and utilization; Types of boilers and their operation; steam economy, Steam				(06 Hours)
		condensers and condensate utilization, Steam generation by utilizing process				
		waste heat using	thermic fluids, Selection and	sizing of boile	ers; waste heat	

	boilers.		
	Compressors, blowers and Vacuum Pumps		
	Compressors, blowers and vacuum pumps and their performance		
	characteristics; Methods of developing vacuum and their limitations,		
	material handling under vacuum, Creation of low pressure/vacuum by pumps		
UNIT - III	and ejectors.		
	Refrigeration and HVAC		
	fundamentals of refrigeration, refrigerant management and safety, Selection		
	of refrigerants; Processes of HVAC, Psychometric Chart and Air-		
	Conditioning System, Ventilation and Indoor Air Quality.		
	Elements of Safety		
	Elements of safety, safety and site selection; Plant layout and unit plot		
	planning; Definition of risk and hazard, Identification and assessment of the	(06 Hours)	
UNIT - IV	hazards, distinction between hazards and risk, Industrial hygiene,		
	toxicological studies, Hazard operability (HAZOP) hazard analysis		
	(HAZAN); Safety Integrity Level (SIL) Studies; Technology selection and		
	transfer, choosing the right process.		
	Safety in Chemical Processes		
	Introduction, Chemical Process classification, Process design and safety		
	parameters. Safety parameters in the process design of phenol from cumene,		
	safety in polyvinyl chloride plant.		
UNIT - V	Chemicals and their Hazards		
	Acetonitrile, acetyl chloride, butyl amine, acrylamide, acrylonitrile, allyl		
	alcohol, benzene, bromine, isopropyl alcohol, acetaldehyde, ethylene oxide,		
	butane, n-hexane, anhydrous ammonia, acetone, toluene, p-xylene, acetic		
	acid, monochloro benzene, oleum, carbon monoxide.		
	Safety Procedures and Designs		
	Process Safety Hierarchy, Process Safety Strategies, Managing Safety,		
UNIT - VI	Safety Reviews and Accident Investigations, Designs for Process Safety,	(06 Hours)	
UNII - VI	Inherently Safer Designs, Controls: Double Block and Bleed, Safeguards or	(06 Hours)	
	Redundancy, Block Valves, Explosion Suppression, Designs for Runaway		
	Reactions.		

Tuto	rials/Assignments:
The in	nternal assessment shall consist of minimum SIX assignments from the following list
1.	Prepare a report on safety issues of any one particular industry.
2.	Prepare Utility Line Diagram (ULD) for typical process.
3.	Write a report on HAZOP study of one particular hazard.
4.	Prepare a report on the color codes for utility pipelines in chemical plants.
5.	Enhancement in collaborative learning is done through, group assignments that will be given to
	encourage students to work with classmates to discuss and complete homework assignments
6.	Write a report on "Importance of Industrial Hygiene in Chemical Industry"
7.	Group discussions on any of the following topics:
	a) Importance of various utilities in chemical industries.
	b) Process safety in petroleum industry
	c) HAZOP Vs HAZAN
8.	Design a manual for application of utilities for various plants.
9.	With the help of this subject knowledge, write a guideline report on how you would apply your
	concepts in industry.
10.	Write a technical report on HAZAN study of any one particular threat.
11.	Elaborate the role of safety engineer in Chemical industry.
12.	Organizing a industrial visit to nearby industry to understand the plant utilities and safety
	measures.
13.	Write a report on your visit to research and development laboratory of national/international
	repute.
Text	Books/ References:
1.	Chemical Process Plants-Managing Plant Utilities, Volume One
2.	Chemical Process Plants-Managing Plant Utilities, Volume Two
3.	Robert McDowall, "Fundamentals of HVAC Systems", Butterworth-Heinemann Elsevier, First
	edition 2006
4.	John J. McKetta, "Encyclopedia of Chemical Processing and Design", Volume 44 CRC Press,
	1993

5.	Daniel A. Crowl, Joseph F. Louvar, "Chemical Process Safety Fundamentals with Applications",		
	Prentice Hall, Third Edition, 2011		
6.	Trevor A. Kletz, "Hazop & Hazan: Identifying and Assessing Process Industry Hazards", Fouth		
	Edition, CRC Press, 1999.		
Syllabus for Unit Test:			
Unit 7	Test - I	UNIT– I, II, and III	
Unit Test - II		UNIT– IV, V, and VI	

PROCESS DYNAMICS AND CONTROL

Designation: Professional Core

Course Pre-requisites:

Students should have

1. Basic knowledge of Mathematics.

2. Process Instrumentation and Instrumental Methods of Analysis

TEACHING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:
Lectures: 3Hours/Week	End Semester Examination: 60 Marks	Theory: 03
Tutorial : 2 Hour /Week	Unit Test: 20 Marks	Practical : 01
Total: 5 Hour /Week	Continuous Assessment: 20 Marks	Total credits: 04
	TW/Practical: 50 marks	
	Total : 150 Marks	

Course Outcomes:

After completion of the course students will be able to

1. To give details of basic control action and develop mathematical models for control purpose.

2. To illustrate behavior of chemical processes.

3. To elucidate transient response of system.

4. To describe stability of the system.

5. To analyze frequency response of process.

6. To apply knowledge for controller selection and tuning.

Topics covered

UNIT-I	 Introduction: Block diagrams, closed loop and open loop control systems, Basic control actions. Open Loop Response of Simple Systems: Dynamics of first order systems using transfer functions; Various first order responses such as, a thermometer bulb. General response to step, ramp, 	(06 Hours)
0141-1	responses such as, a thermometer bulb. General response to step, ramp, impulse, and sinusoidal inputs; Concentration and temperature responses of a stirred tank	(06 Hours)

	Dynamic Behavior of Chemical Processes: Linearization of liquid level				
	systems: Response of a pressure system, second order systems, the manometer;				
UNIT-		(06 Hours)			
	the input-output models. Dynamics and analysis of first, second and higher				
	order systems.				
	Transient Response of Control Systems:				
	Servo and regulated operation, General equations for the transient response,				
UNIT-	m proportional control of a signal capacity process; Integral control,	(06 Hours)			
	Proportional-integral control and derivative action.				
	Stability:				
	Concept of stability, Stability criterion, Routh test for stability.				
UNIT-	7 Root Locus Analysis: (06 H)				
	Concept of root locus, Locus diagram.				
	Frequency Response Analysis:				
UNIT-	\mathbf{v} First order systems, Bode diagram, and Complex numbers to get frequency	(06 Hours)			
UNII	response. Nyquist plot.	(00 110013)			
	Advanced Control Schemes: Controller selection and tuning, Control valve				
UNIT-	VI characteristics and sizing, cascade control, Feed forward and ratio control.	(06 Hours)			
	Introduction of digital control system.	``´´			
List of Experiments:					
	work will consist of the experiments listed below, of which at least eight should be	e performed in			
	ory by the students.				
1.	To study the closed loop pressure control for P control action and calculate offset.				
2.	To study the closed loop pressure control for PI action PID action.				
3.	To study optimizing performance for pressure control trainer by using tuning techniq	ue with help of			
	PID action.				
4.	To study closed loop system for servo problem having PI action consideration.	o study closed loop system for servo problem having PI action consideration.			
5.	To study the closed loop flow controller				
6.	To study the closed loop level controller				

7.	To study the ratio controller
8.	To study the cascade controller
9.	Root locus analysis on software (Ex. MATLAB)
10.	Bode plot on software (Ex. MATLAB)
11.	Nyquist plot on software (Ex. MATLAB)
12.	PID control loop simulation for a first order process (Ex. SIMULINK)
Assig	nments:
1.	Students have to visit chemical industry and prepare a detailed report on various controllers used in industry.
2.	Watch NPTEL video and make report on various topics in process dynamics and control
3.	Group discussions on controllers used for chemical processes.
4.	To find Transfer Function for 1 st order and 2 nd order process.
5.	Draw the Control Loop and Block Diagram for different chemical processes.
6.	Solve numerical questions in last three year question papers.
7.	Write note on Advance Controllers.
8.	Explain Digital Controllers.
9.	Explain IMC Controller in Detail.
10.	Explain MPC Controller in Detail.
11.	Explain process Identification of any Chemical Process in detail
12.	Explain Optimal control of any one Chemical Process.
Text I	Books/References:
1	G. Stephanopoulos, Chemical Process Control: An introduction to theory and practice, Prentice
	Hall, New Jersey, 1984.
2	P. Harriott, Process Control, Reprint of text, ed. Tata McGraw Hill, 1983.
3	D. R. Coughanowr, Process system analysis and control, 2nded, McGraw Hill, 1991.
4	Seborg, D.E., Edgar, T.F. and Mellichamp, "Process dynamics and control," Wiley, New York, D.A.
	2003.
Syllab	ous for Unit Test:

Unit Test -I	UNIT – I , II, III
Unit Test -II	UNIT – IV, V, VI

CHEMICAL PROCESS MODELING AND SIMULATION

Designation: Professional Core

Course Pre-requisites:

Students should have basic knowledge of

1 Heat transfer, Mass transfer, Chemical reaction engineering, Process Dynamics and Control

- 2 Process Calculation
- 3 Mathematics including integration and derivation

TEACHING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:	
Lectures: 3 Hours/Week	End Semester Examination: 60 Marks	Theory: 03	
Practical : 2 Hour /Week	Unit Test: 20 Marks	Practical: 01	
Total : 5Hours/Week	Continuous Assessment: 20 Marks	Total credits: 04	
	Term work / practical:50 Marks		
	Total :150 Marks		

Course Outcomes:

After completion of the course students would be able to

- 1 Express mass balance, energy balance and momentum balance equation for various chemical process systems.
- 2 Express models for heat transfer equipment such as double pipe heat exchangers, shell and tube heat exchanger, etc.
- **3** Develop models for distillation columns, etc.
- 4 Develop models for reaction equipment such as batch reactor, CSTR, etc.
- **5** Recognize simulation approaches.
- 6 Simulate model equations using numerical methods.

Introduction to modeling:	

UNIT-I	Introduction, definition of modeling, different types of models, applications of	(06 Hours)
	mathematical modeling, principles of formation, lumped model, distributed	(00 110015)
	parameter model, Fundamental laws: continuity equation, energy equation,	

	equations of motions, transport equations, equations of state, chemical kinetics.				
	Modeling of Heat transfer equipment:				
UNIT-II	Double pipe heat exchanger, shell and tube heat exchanger, two heated tanks,	(06 Hours)			
	single component vaporizer, steady-state heat Conduction through a hollow				
	cylindrical pipe, heat transfer with coil				
	Modeling of distillation columns:				
UNIT-II	I Ideal binary distillation column, multi component non-ideal distillation	(06 Hours)			
	column, batch distillation with holdup, flash distillation, packed column design				
	Modeling of reactors:				
UNIT-IV	Two phase CSTR with heat removal, series of isothermal constant holdup	(06 Hours)			
UINI I -I V	CSTRs, CSTRs with variable holdups, Gas phase-pressurized CSTR, Non-	(00 110015)			
	Isothermal CSTR, Batch reactor, gas liquid bubble reactor, semi-batch reactor.				
	Introduction to simulation:				
	Introduction to simulation, definition of simulation, approaches of simulation:				
UNIT-V	modular approaches, equation-solving approach, decomposition of networks: (06 Hour				
	tearing algorithms, algorithms based on the signal flow graph, algorithms	.S			
	based on reduced digraph.				
	Simulations using numerical methods:				
UNIT-V	Use of numerical methods to solve mathematical model equations of Gravity	(06 Hours)			
UNII-VI	flow tank, Three CSTRs in series, Non-isothermal CSTR, Binary distillation	(00 110015)			
	column, Multi-component distillation column, Batch reactor.				
Assignm					
	Vrite a report on the importance of modeling with reference to the process industries				
	Solve old (last five years) question papers with reference to particular topic.				
	Discuss the importance of modeling and simulation w. r. t. science and engineering				
	Prepare a report on application of modeling and simulation.				
	Give fifteen minute presentation (seminar) on particular topic and prepare a report.				
	Obtain any industrial data for modeling and simulation.				
7 \	With the help of this subject knowledge, write a guideline report on how you would apply your				
С	concepts in industry.				

8	Discuss different software available for modeling and simulation.		
9	Write a technical report on your visit to a process industry with respect to modeling.		
10	Group discussion on the recent advances in simulation software.		
11	Prepare a report on modeling and simulation of all different chemicals reactors.		
12	Technical interview based on the knowledge of Modeling simulation.		
13	Students may take any industrial case e.g. manufacturing of Maleic anhydride and solve this case		
	using standard simulation software like Aspen Plus, HYSIS		
In addi	tion to these above stated assignments concerned faculty member may design his/her own		
assignr	nents.		
Term	Work:		
Term w	vork will consist of the practicals listed below, out of which any eight practicals are to be performed		
in labo	ratory by the students.		
1	Study of gravity flow tank.		
2	Study of Batch reactor		
3	Simulation of CSTR		
4	Simulation of bubble point temperature		
5	Simulation of distillation column.		
6	Simulation of heat exchanger		
7	Simulation of first order reaction system in batch reactor.		
8	Simulation of first order reaction system in CSTR		
9	Study of a reversible reaction in a batch reactor.		
10	Simulation of any model equation.		
11	Study of CSTR combination in first order reactions.		
	For simulation, faculty member may use any suitable simulation software like MATLAB, ASPEN,		
	CHEMCAD, etc. In addition to these above stated practicals concerned faculty member may design		
	his/her own practicals.		
Text B	ooks/References:		
1	W. L. Luyben, Process Modeling Simulation and Control for Chemical Engineers, McGraw Hill,		
	1990.		

S.C. Chapra, R.P. Car	hale, Numerical Methods for Engineers, 6th Edition, Tata-McGraw Hill	
Publications, 2012.		
R.E.G. Franks, Modeling and Simulation in Chemical Engineering, WielyIntrscience, NY, 1972.		
B.V. Babu, Process Plant Simulation, Oxford University Press, NY 2004.		
D. Himmelblau, K.B. Bischoff, Process Analysis and Simulation, John Wiley & Sons, 1968		
ous for Unit Test:		
Unit Test -I UNIT – I ,II,III		
'est -II	UNIT – IV,V,VI	
	Publications, 2012. R.E.G. Franks, Modelin B.V. Babu, Process Plar D. Himmelblau, K.B. B us for Unit Test: est -I	

INDUSTRIAL MANAGEMENT

Designation: Professional Core

Course Pre-requisites:

Students should have basic knowledge of

1 Concept of Management.

TE	ACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS A	LLOTTED:
Lec	tures: 3	Hours/Week	End Semester Examination: 60 Marks	Theory: 03	
			Unit Test: 20 Marks	Drawing: 00	
Tota	al:3 Hou	urs/Week	Continuous Assessment: 20 Marks	Total credits:	: 03
			Total :100Marks		
Сог	ırse Ou	tcomes:			
Afte	er comp	letion of the course, s	students would be able to		
1.	Know	the types of business	3.		
2.	Under	rstand the types of org	ganization		
3.	Under	rstand the forms of ov	wnership.		
4.	Know	the concepts of mate	erial management.		
5.	Know	the concepts quality	management.		
6.	Know	the various acts.			
			Topics covered		
		Outline of Busines	s		
UN	IT-I	Types of Business	s, Industrial sectors Globalization Managem	nent Process,	(06 Hours)
Principles of Management, Functions of Managem		gement, Functions of Management			
		Organizational Ma	anagement		
UNIT-II		Organization, Typ	pes of organization, Departmentation, P	Principles of	(06 Hours)
		Organization, Forms of ownership			
UN	IT_III	Financial Manager	ment		(06 Hours)
UNIT-III		Financial Manager	ment- Objectives & Functions, Capital G	eneration &	(00 110015)

	Management, Budgets and accounts, Taxation (Excise Tax, Service Tax,		
	Income Tax, Value Added Tax and Custom Duty)		
	Materials ManagementInventory Concept, its classification, functions of inventory, ABC Analysis,Economic Order Quantity Concept, graphical representation, determination of		
UNIT-IV	EOQ,Standard steps in Purchasing, Modern Techniques of Material Management, Material Resource Planning (MRP), Enterprise Resource Planning (ERP)		
	Quality Management		
UNIT-V	⁷ Quality Management System, Quality Control, Quality Circle, Quality Assurance, Total Quality and TQM, Kaizen,5'S',6 Sigma		
	Industrial Legislation and Industrial Safety		
	Safety Management, Causes of accidents, Types of Industrial Accidents,		
UNIT-VI	Preventive measures, Safety procedures		
	Factory Act, Air (Prevention and Control of Pollution) Act, Minimum Wages		
	Act, Workman Compensation Act.		
Assignme	nts		
1. T	pes of business.		
2. G	obalization in India		
3. D	fferent principals of management.		
4. V	arious types of organization		
5. V	arious forms of ownership		
6. Ca	apital Generation for an organization.		
7. A	BC Analysis.		
8. St	Standard purchase		
9. M	Material Resource Planning (MRP), Enterprise Resource Planning (ERP)		
10. Co	Concepts of quality management.		
11. To	Total Quality Management (TQM)		
12. K	Kaizen approach in Quality management.		
13. 5'	5'S',6 Sigma		

14.	Factory Act			
15.	Minimum Wages Act, Workman Compensation Act			
In addi	tion to these above stated	assignments concerned faculty member may design his/her own		
assignr	nents			
Text B	ooks/References:			
1.	Khanna. O.P., "Industrial Engineering & Management" Dhanpat Rai & Sons New Delhi.			
2.	Banga T. R. and Sharma S.C. "Industrial Engineering & Management" Khanna Publication			
3.	Saxena, S.C." Business Administration & Management" SahityaBhavan Agra			
4.	Newman W.H., Warren E. K. and McGil A. R., "The process of Management" Prentice- Hall			
Syllabus for Unit Test:				
Unit Te	Unit Test -I UNIT – I ,II,III			
Unit Te	Unit Test -II UNIT – IV, V, VI			

PLANT DESIGN PROJECT ENGINEERING AND COSTING

Designation: Professional Core

Course Pre-requisites:

Students should have basic knowledge of

- 1 Chemical Process Industry
- 2 Chemical design

TEA	TEACHING SCHEME: EXAMINATION SCHEME: CREDITS AL				
Lectures: 3 Hours/Week		Hours/Week	End Semester Examination: 60 Marks	Theory: 03	
Prac	Practical : 2 Hour /WeekUnit Test: 20 MarksPractical: 01				
Tota	ıl :5	Hours/Week	Continuous Assessment: 20 Marks	Total credits: 04	
			Termwork / Oral :50 Marks		
			Total :150 Marks		
Cou	rse Ou	tcomes:			
Afte	r comp	letion of the course studen	ts would be able to		
1.	Select	appropriate process for a	project.		
2.	Differ	entiate the equipment and	able to prepare specification sheet.		
3.	Learn	basic economic concept,	to understand and apply this concepts in the	ne project work	s undertaken
	and to chemical engineering situation by solving problem.				
4.	Evalu	ate the project cost includi	ng capital investment, product cost and th	e total project	cost.
5.	Solve	problem on profitability a	nd breakeven analysis.		
6.	Contro	ol and schedule of the proj	ect using CPME/PERT technique, calcula	ations.	
	•				
			Topics covered		
		Introduction:			
		Plant design : Design basis, process selection, material of construction, plant			
UNI	T-I	location ,plant layout and installation, safety ,start up ,shut down and operating (06Hours)			
		guidelines ,Preliminary techno economic feasibility report .Complete			
	engineering flowsheet drawing.				

UNIT-J	Optimization and feasibility of plant design, selection of process equipments: Standard versus special equipment selection criteria, and specification sheets. Importance of Laboratory development pilot plant, Indian boiler regulations, factories act.	(06Hours)			
UNIT-I	Cost estimation:Cash flow and cumulative cash position for industrial operations, factorsUNIT-IIIaffecting estimation of investment and production cost, total capitalinvestment, fixed and working capital investment &their estimations, type ofestimates, cost indexes, method for estimating capital investment. Insurance.				
UNIT-I	 Estimation of total product cost, Estimation of total product cost: manufacturing cost, general expenses, Manufacturing cost: direct production cost, fixed charges, plant overhead cost. Types of depreciation, Method for determining depreciation: straight line method, decline balance method, sum of the year digit method, shrinking fund method etc, payout period. 	(06 Hours)			
UNIT-V	Profitability, alternative investments and replacement: Methods for profitability evaluation, Evaluation of Break Even Point and its significance, % rate of return, Practical factors in alternative investment and replacement Studies	(06 Hours)			
UNIT-V	 Scheduling and Networking of Project Planning of project schedule by BAR CHART, Inventory control scheduling project using CPM/PERT methods. Network diagramming, earliest start time and earliest finish time, Advantages of CPM, Cost to finish the project earlier than normal cost. 	(06 Hours)			
Assign	nents				
1.	Write a report on plant design for any company for current year.				
2.	Write preliminary feasibility report for any industry.				
3.	Draw complete engineering drawing for any process industry.				
4.	Prepare specification sheet for equipments for any particular industry.				
5.	Give power point presentation of different types of cost for industry.				
6.	Draw a chart of how cash flow takes place in chemical industry.				

7.	Analyze cost index for last ten years and how it changes.		
8.	Understand basic concept of depreciation and apply to any chemical industry and calculate the		
	values.		
9.	Apply a critical-thinking and problem-solving approach towards factories act.		
10.	Specify materials for construction and estimate the cost of investments for chemical industry.		
11.	Write complete report for a chemical industry which should include all the factors related to cost		
	estimation.		
12.	Give power point presentation on knowledge of safety in chemical industry.		
13.	Give power point presentation on importance of break even analysis.		
14.	Prepare one network diagramming by using CPM method.		
15.	Gove a power point presentation on CPM and PERT for any particular industry.		
In add	lition to these above stated assignments concerned faculty member may design his/her own		
assigni	nents		
Term	Work:		
Term v	work will consist of drawing of sheets		
	Standard symbols as per IS code		
1	Process flow diagram		
2	Piping and Instrumentation diagram		
3	Plant layout and elevations		
4	Utility diagram		
5	Piping GA drawing		
6	Piping isometrics		
7.	Draw any sheet by using Autocad.		
Text B	Books/References:		
1.	M.S.Peters and Timmerhaus, "Plant design and Economics for Chemical Engineers", McGraw Hill		
	3rd Edition.		
2.	F.C. Vibrandt and C.E. Dryden, "Chemical Engineering Plant Design", McGraw Hill Fifth Edition		
3.	Coulson & Richardson's Chemical EngineeringVolume 6, Butterworth-Heinemann, 1999, 3rd		
	Edition.		

4.	Industrial Engineering and Management by O. P. Khanna Dhanpat Rai & Sons, 1985 7 th Edition				
5.	Project Engineering: Suhas Mokashi ,Mcmillan Publisher .				
Syllab	Syllabus for Unit Test:				
Unit Test -I UNIT – I ,II,III					
Unit T	est -II UNIT – IV,V,VI				

Bharati Vidyapeeth University College of Engineering Elective

		Electi	ve III: Advanced Oxidation Processes		
Des	signatio	n: Elective			
Co	urse Pro	e-requisites:			
Stu	dents sh	ould have basic knowledg	e of		
1	Waste v	vater treatment			
2	Engine	ering Chemistry			
TE	ACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS A	LLOTTED:
Lec	tures: 3	Hours/Week	End Semester Examination: 60 Marks	Theory: 03	
Pra	ctical : 2	2 Hour /Week	Unit Test: 20 Marks	Practical: 01	
Tot	al : 5	Hours/Week	Continuous Assessment: 20 Marks	Total credits:	04
			Term work / Oral :50 Marks		
			Total :150 Marks		
Co	urse Ou	tcomes:			
Aft	er comp	letion of the course studen	ts would be able to		
1.	Demo	onstrate the mechanism of	various advanced oxidation processes (AC	OPs)	
2.	Unde	rstand the method of ozona	ation and photon induced AOPs		
3.	Lagura	the method of betano and	ava ab ata aata busia an dita ana ab aniom		
э.	Learn	the method of heterogene	ous photocatalysis and its mechanism		
4.	Know	the method of homogeneous	ous and heterogeneous Fenton processes a	and its mechani	sm
5.	Analy	ze emerging AOPs and th	eir mechanism		
6.	Demo	nstrate the industrial appli	cations of AOPs		
	<u> </u>		Topics covered		
		Introduction to advanc	ed oxidation processes (AOPs)		
		Conventional waste wat	er treatment processes, Fundamentals and	d background	
UN	IT-I	of AOPs for water and	wastewater treatment, basic reaction n	nechanism of	(06 Hours)
		AOPs, Role of hydroxy	l radicals and their generation, Reaction	kinetics and	
l		degradation mechanisms	s of organic pollutants by hydroxyl radica	als, Effects of	

	process parameters and scavenging media on degradation efficiency, oxidation	
	potential of AOPs, merits and demerits of various AOPs	
UNIT-II	Ozonation and Photo induced AOPs: Ozonation: background and fundamentals, reaction kinetics and mechanisms, Application of homogeneous and heterogeneous catalytic ozonation in water treatment Fundamentals of UV irradiation, Absorption and bond dissociation energy, UV sources and their characteristics, choice of photo source–used in AOPs and their spectral distributions, mechanism of photo induced AOPs. Photo induced AOPs: Oxidation using ultraviolet irradiation and hydrogen peroxide (UV/H2O2), oxidation using ultraviolet irradiation and ozone	(06 Hours)
	(UV/Ozone), oxidation using combination of ultraviolet irradiation, hydrogen peroxide and ozone (UV/ H2O2 /Ozone).	
UNIT-III	Heterogeneous photo-catalysis Fundamentals of semiconductor photo-catalysis, various semiconductor particles used in photocatalytic applications, visible light driven photo- catalysts, photocatalytic reactions and kinetic studies and introduction to nano photo-catalysis. Photocatalytic reactors, solar energy driven or artificial light photo reactors, solar collectors, design of slurry or supported catalyst reactors, comparing reactor efficiencies and reuse of catalyst.	(06 Hours)
UNIT-IV	Homogeneous and heterogeneous Fenton processes Fenton process, photo-fenton process, advanced fenton process, the mechanism of fenton based processes, merits and demerits of homogeneous and heterogeneous Fenton processes.	(06Hours)
UNIT-V	Emerging AOPs Electrochemical oxidation, Ultrasound processes; principles of sonochemistry and acoustic cavitation, ultrasound cavitation and its combination with other AOPs, synergistic and antagonistic effects, hydrodynamic cavitation and its combination with other AOPs.	(06 Hours)

	Industrial applications of AOPs			
	Application of AOPs for industries such as textile, petroleum, pharmaceutical,			
UNIT-	I petrochemical industry etc., decontamination of ground water, cost or(06 Hours)			
	economic analysis of various AOPs			
Assign	ments			
1.	Write a report on current scenario of advanced oxidation processes.			
2.	Evaluate the use of solar or visible light driven photocatalysts.			
3.	Estimate synergistic effect of combining AOPs with cavitation based processes			
4.	Give power point presentation on semiconductor photocatalysis			
5.	Analyze the industrial applications of AOPs.			
6.	Understand the reaction mechanism of AOPs			
7.	Apply a critical-thinking towards scale-up aspects of AOPs.			
8.	Analyze recent advances in synthesis of mixed oxide photocatalysts.			
9.	Write a technical report on your visit to a waste water treatment plant.			
10.	Give power point presentation on the applications of emerging AOPs			
11.	Group discussion on the recent advances in advanced oxidation processes.			
12.	Make a complete chart of various operations involved in waste water treatment.			
13.	Assess the environmental or safety norms for disposal of waste water.			
In add assignn	ition to these above stated assignments concerned faculty member may design h	iis/her own		
Term V	Work:			
Term w	vork will consist of the Seminar :			
	Seminar should be based on recent advances in AOPs. Students may undertake studies in water and			
	waste water treatment using AOPs. Design and scale-up aspects can be studied in detail. Termwork			
	should be based on the technical report on these studies carried out by individual or sm	all group of		
	students.			
Text R	ooks/References:			
1.	Simon Parsons, Advanced oxidation processes for water and wastewater treatment, IWA	Publishing		
1.	Simon raisons, rayaneed original processes for water and wastewater reatment, rwr	i aononing,		

	2004.				
2.	Thomas Oppenlander, Photochemical Purification of Water and Air: Advanced Oxidation Processes				
	(AOPs): Principles, Reaction Mechanisms, Reactor Concepts, Wiley-VCH Publishing, 2003.				
3.	Vincenzo Belgiorno, Vincenzo Naddeo and Luigi Rizzo, Water, wastewater and soil treatment by				
	Advanced Oxidation Processes (AOP), Lulu Enterprises, 2011.				
4.	Jean-Pierre Franc, Jean-Marie Michel, "Fundamentals of Cavitation", Kluwer Academic Publishers,				
	Dordrecht.				
5.	T. J. Mason and J. P. Lorimer, "Applied sonochemistry: Uses of power ultrasound in chemistry and				
	processing", Wiley-VCH publishers.				
Syllabus for Unit Test:					
Unit Test -I		UNIT – I ,II,III			
Unit Test -II		UNIT – IV,V,VI			

ELECTIVE III: FUEL CELL TECHNOLOGY

Designation: Elective

Course Pre-requisites:

Students should have knowledge of

1. Chemistry, Physics, Thermodynamics

TEACHING SCHEME: EXAMINATION SCHEME: CREDITS ALLOTTED: Lectures : 3 Hours/Week End Semester Examination : 60 Marks Theory : 03 Practical : 2 Hour /Week Continuous Assessment : 40 Marks Practical : 01 Practical : 2 Hour /Week Continuous Assessment : 40 Marks Practical : 01 Term Work/Oral : 50 Marks Total credits : 04 After completion of the course students will be able to				Γ		Γ	
Practical : 2 Hour /Week Continuous Assessment : 40 Marks Practical : 01 Practical : 01 Term Work/Oral : 50 Marks Total credits : 04 Total : 150 Marks Total credits : 04 Course Outcomes: Total : 150 Marks Total credits : 04 After completion of the course students will be able to 1. Define the concept of fuel cell.	TEA	CHINC	<u>S SCHEME:</u>	EXAMINATION SCHEM	<u>E:</u>	CREDITS AI	LOTTED:
Image:	Lectu	ires	: 3 Hours/Week	End Semester Examination	: 60 Marks	Theory	: 03
Total : 150 Marks Total : 150 Marks Course Outcomes: After completion of the course students will be able to 1. Define the concept of fuel cell. 2. Express various types of fuel cell. 3. Distinguish between the fuel cell and electrochemical cell. 4. Express the thermodynamics of fuel cell system. 5. Learn the process of fuel processing 6. Develop enough skills to design systems or components of fuel cells. Topics covered Introduction to Fuel Cell Technology Fuel cell definitions, Need of fuel Cell, Principal of fuel cell technology, Basics Electrochemistry of fuel cell, Calculation of cell potential: activities or concentrations, electrochemical potential; The movement of ions in solution: diffusion and migration, Conductivity and mobility, Liquid junction potentials, ion-selective electrodes. UNIT - II Alkaline Fuel Cells, Phosphoric Acid Fuel Cells, Solid Oxide Fuel Cells, (06 Hours)	Pract	ical	: 2 Hour /Week	Continuous Assessment	: 40 Marks	Practical	: 01
Course Outcomes: After completion of the course students will be able to 1. Define the concept of fuel cell. 2. Express various types of fuel cell. 3. Distinguish between the fuel cell and electrochemical cell. 4. Express the thermodynamics of fuel cell system. 5. Learn the process of fuel processing 6. Develop enough skills to design systems or components of fuel cells. Topics covered Introduction to Fuel Cell Technology Fuel cell definitions, Need of fuel Cell, Principal of fuel cell technology, Basics Electrochemistry of fuel cell, Calculation of cell potential: activities or concentrations, electrochemical potential; The movement of ions in solution: diffusion and migration, Conductivity and mobility, Liquid junction potentials, ion-selective electrodes. UNIT - II Alkaline Fuel Cells, Phosphoric Acid Fuel Cells, Solid Oxide Fuel Cells, (06 Hours)				Term Work/Oral	: 50 Marks	Total credits	: 04
After completion of the course students will be able to 1. Define the concept of fuel cell. 2. Express various types of fuel cell. 3. Distinguish between the fuel cell and electrochemical cell. 4. Express the thermodynamics of fuel cell system. 5. Learn the process of fuel processing 6. Develop enough skills to design systems or components of fuel cells. Topics covered Introduction to Fuel Cell Technology Fuel cell definitions, Need of fuel Cell, Principal of fuel cell technology, Basics Electrochemistry of fuel cell, Calculation of cell potential: activities or concentrations, electrochemical potential; The movement of ions in solution: diffusion and migration, Conductivity and mobility, Liquid junction potentials, ion-selective electrodes. UNIT - II Alkaline Fuel Cells, Phosphoric Acid Fuel Cells, Solid Oxide Fuel Cells, (06 Hours)				Total	: 150 Marks		
After completion of the course students will be able to 1. Define the concept of fuel cell. 2. Express various types of fuel cell. 3. Distinguish between the fuel cell and electrochemical cell. 4. Express the thermodynamics of fuel cell system. 5. Learn the process of fuel processing 6. Develop enough skills to design systems or components of fuel cells. Topics covered UNIT - I Introduction to Fuel Cell Technology Fuel cell definitions, Need of fuel Cell, Principal of fuel cell technology, Basics Electrochemistry of fuel cell, Calculation of cell potential: activities or concentrations, electrochemical potential; The movement of ions in solution: diffusion and migration, Conductivity and mobility, Liquid junction potentials, ion-selective electrodes. (06 Hours UNIT - II Alkaline Fuel Cells, Phosphoric Acid Fuel Cells, Solid Oxide Fuel Cells, (06 Hours)							
1. Define the concept of fuel cell. 2. Express various types of fuel cell. 3. Distinguish between the fuel cell and electrochemical cell. 4. Express the thermodynamics of fuel cell system. 5. Learn the process of fuel processing 6. Develop enough skills to design systems or components of fuel cells. Topics covered Introduction to Fuel Cell Technology Fuel cell definitions, Need of fuel Cell, Principal of fuel cell technology, Basics Electrochemistry of fuel cell, Calculation of cell potential: activities or concentrations, electrochemical potential; The movement of ions in solution: diffusion and migration, Conductivity and mobility, Liquid junction potentials, ion-selective electrodes. (06 Hours UNIT - II Alkaline Fuel Cells, Phosphoric Acid Fuel Cells, Solid Oxide Fuel Cells, (06 Hours)	Cour	se Out	comes:				
 Express various types of fuel cell. Express various types of fuel cell and electrochemical cell. Express the thermodynamics of fuel cell system. Learn the process of fuel processing Develop enough skills to design systems or components of fuel cells. Topics covered Topics covered Introduction to Fuel Cell Technology Fuel cell definitions, Need of fuel Cell, Principal of fuel cell technology, Basics Electrochemistry of fuel cell, Calculation of cell potential: activities or concentrations, electrochemical potential; The movement of ions in solution: diffusion and migration, Conductivity and mobility, Liquid junction potentials, ion-selective electrodes. UNIT - II Alkaline Fuel Cells, Phosphoric Acid Fuel Cells, Solid Oxide Fuel Cells, (06 Hours)	After	comple	etion of the course s	tudents will be able to			
 3. Distinguish between the fuel cell and electrochemical cell. 4. Express the thermodynamics of fuel cell system. 5. Learn the process of fuel processing 6. Develop enough skills to design systems or components of fuel cells. Topics covered Introduction to Fuel Cell Technology Fuel cell definitions, Need of fuel Cell, Principal of fuel cell technology, Basics Electrochemistry of fuel cell, Calculation of cell potential: activities or concentrations, electrochemical potential; The movement of ions in solution: diffusion and migration, Conductivity and mobility, Liquid junction potentials, ion-selective electrodes. UNIT - II Alkaline Fuel Cells, Phosphoric Acid Fuel Cells, Solid Oxide Fuel Cells, (06 Hours) 	1.	Defin	e the concept of fue	l cell.			
 Express the thermodynamics of fuel cell system. Learn the process of fuel processing Develop enough skills to design systems or components of fuel cells. Topics covered Introduction to Fuel Cell Technology Fuel cell definitions, Need of fuel Cell, Principal of fuel cell technology, Basics Electrochemistry of fuel cell, Calculation of cell potential: activities or concentrations, electrochemical potential; The movement of ions in solution: diffusion and migration, Conductivity and mobility, Liquid junction potentials, ion-selective electrodes. UNIT - II Alkaline Fuel Cells, Phosphoric Acid Fuel Cells, Solid Oxide Fuel Cells, (06 Hours) 	2.	Expre	ss various types of	fuel cell.			
 Learn the process of fuel processing Develop enough skills to design systems or components of fuel cells. Topics covered Introduction to Fuel Cell Technology Fuel cell definitions, Need of fuel Cell, Principal of fuel cell technology, Basics Electrochemistry of fuel cell, Calculation of cell potential: activities or concentrations, electrochemical potential; The movement of ions in solution: diffusion and migration, Conductivity and mobility, Liquid junction potentials, ion-selective electrodes. UNIT - II Alkaline Fuel Cells, Phosphoric Acid Fuel Cells, Solid Oxide Fuel Cells, (06 Hours) 	3.	Distin	guish between the f	fuel cell and electrochemical c	ell.		
6. Develop enough skills to design systems or components of fuel cells. Topics covered Introduction to Fuel Cell Technology Fuel cell definitions, Need of fuel Cell, Principal of fuel cell technology, Basics Electrochemistry of fuel cell, Calculation of cell potential: activities or concentrations, electrochemical potential; The movement of ions in solution: diffusion and migration, Conductivity and mobility, Liquid junction potentials, ion-selective electrodes. (06 Hours UNIT - II Alkaline Fuel Cells, Phosphoric Acid Fuel Cells, Solid Oxide Fuel Cells, (06 Hours)	4.	Expre	ss the thermodynan	nics of fuel cell system.			
Topics covered Topics covered Introduction to Fuel Cell Technology Fuel cell definitions, Need of fuel Cell, Principal of fuel cell technology, Basics Electrochemistry of fuel cell, Calculation of cell potential: activities (06 Hours Or concentrations, electrochemical potential; The movement of ions in solution: diffusion and migration, Conductivity and mobility, Liquid junction potentials, ion-selective electrodes. (06 Hours UNIT - II Alkaline Fuel Cells, Phosphoric Acid Fuel Cells, Solid Oxide Fuel Cells, (06 Hours)	5.	Learn	the process of fuel	processing			
UNIT - II Introduction to Fuel Cell Technology Fuel cell definitions, Need of fuel Cell, Principal of fuel cell technology, Basics Electrochemistry of fuel cell, Calculation of cell potential: activities Of Hours or concentrations, electrochemical potential; The movement of ions in solution: diffusion and migration, Conductivity and mobility, Liquid junction Of Hours votentials, ion-selective electrodes. Classification of Fuel Cells (06 Hours) UNIT - II Alkaline Fuel Cells, Phosphoric Acid Fuel Cells, Solid Oxide Fuel Cells, (06 Hours)	6.	6. Develop enough skills to design systems or components of fuel cells.					
UNIT - I Introduction to Fuel Cell Technology Fuel cell definitions, Need of fuel Cell, Principal of fuel cell technology, Basics Electrochemistry of fuel cell, Calculation of cell potential: activities (06 Hours) or concentrations, electrochemical potential; The movement of ions in solution: diffusion and migration, Conductivity and mobility, Liquid junction (06 Hours) UNIT - II Classification of Fuel Cells (06 Hours)		1					
UNIT - IFuel cell definitions, Need of fuel Cell, Principal of fuel cell technology, Basics Electrochemistry of fuel cell, Calculation of cell potential: activities or concentrations, electrochemical potential; The movement of ions in solution: diffusion and migration, Conductivity and mobility, Liquid junction potentials, ion-selective electrodes.(06 Hours)UNIT - IIClassification of Fuel Cells Alkaline Fuel Cells, Phosphoric Acid Fuel Cells, Solid Oxide Fuel Cells, (06 Hours)				Topics covered			
UNIT - IBasics Electrochemistry of fuel cell, Calculation of cell potential: activities or concentrations, electrochemical potential; The movement of ions in solution: diffusion and migration, Conductivity and mobility, Liquid junction potentials, ion-selective electrodes.(06 Hours)UNIT - IIClassification of Fuel Cells Alkaline Fuel Cells, Phosphoric Acid Fuel Cells, Solid Oxide Fuel Cells, (06 Hours)(06 Hours)			Introduction to H	Suel Cell Technology			
UNIT - I or concentrations, electrochemical potential; The movement of ions in solution: diffusion and migration, Conductivity and mobility, Liquid junction potentials, ion-selective electrodes. (06 Hours) UNIT - II Classification of Fuel Cells (06 Hours)			Fuel cell definition	ons, Need of fuel Cell, Princ	ipal of fuel c	ell technology,	
or concentrations, electrochemical potential; The movement of ions in solution: diffusion and migration, Conductivity and mobility, Liquid junction potentials, ion-selective electrodes. UNIT - II Classification of Fuel Cells Alkaline Fuel Cells, Phosphoric Acid Fuel Cells, Solid Oxide Fuel Cells, (06 Hours)	TINIT	гт	Basics Electrochemistry of fuel cell, Calculation of cell potential: activities				
potentials, ion-selective electrodes. Classification of Fuel Cells UNIT - II Alkaline Fuel Cells, Phosphoric Acid Fuel Cells, Solid Oxide Fuel Cells, (06 Hours)		1 - 1	or concentrations, electrochemical potential; The movement of ions in (06 Hours)				
UNIT - II Classification of Fuel Cells, Phosphoric Acid Fuel Cells, Solid Oxide Fuel Cells, (06 Hours)			solution: diffusion and migration, Conductivity and mobility, Liquid junction				
UNIT - II Alkaline Fuel Cells, Phosphoric Acid Fuel Cells, Solid Oxide Fuel Cells, (06 Hours)			potentials, ion-sel	ective electrodes.			
			Classification of	Fuel Cells			
Molten Carbonate Fuel Cells, Direct Methanol Fuel Cells, Proton Exchange	UNI	Г - II	Alkaline Fuel Ce	lls, Phosphoric Acid Fuel Ce	ells, Solid Oxi	de Fuel Cells,	(06 Hours)
			Molten Carbonate	Fuel Cells, Direct Methanol	Fuel Cells, Pr	oton Exchange	

	Membrane Fuel Cells			
	Fuel Cell Components			
	Electrolytes, Catalysts, Current collector/	pipolar plate.		
	Fuel cell characterization	Fuel cell characterization		
UNIT	T - III Possible ways of characterization, In-sit	tu characterization especially I-V	(06 Hours)	
	characteristics and electrochemical in	npedance spectroscopy; Cyclic		
	voltammetry; Current interruption tec	hnique, Ex-situ characterization		
	especially electrolyte and bipolar plate			
	Fuel Cells Thermodynamics			
	Gibb's free energy; reversible and irreve	rsible losses; Fuel cell efficiency,		
UNIT	T - IV Nernst equation, Effect of temperature,	pressure, concentration on Nernst	(06 Hours)	
	potential, Calculations of electrochemical	potential.		
	Fuel Processing			
	Processing Hydrogen from Alcohol	s, Producing Hydrogen from		
UNIT	Hydrocarbons, Hydrogen from Other Sour	ces, Gas Clean-up, Challenges and	(06 Hours)	
	Opportunities for Research in Fuel Process	sing		
	Fuel Cell System and system integration	Fuel Cell System and system integration		
TINIT	T - VI Hydrogen Production, Hydrogen Storage	Hydrogen Production, Hydrogen Storage, Methods of Hydrogen Storage,		
UNII	Prediction of Hydrogen Uptake in Carbo	on Materials, Blance of plant and	(06 Hours)	
	Power electronic and system integration			
	orials/Assignments:			
	internal assessment shall consist of minimum SIX as	ssignments.		
1.	_	Questions involving classification of Fuel Cells.		
2.	Prepare one assignment considering any one type of fuel cell.			
3.	Conducting surprise MCQ test for students			
4.	Apply a critical-thinking and problem-solving approach towards the principles of fuel cell.			
5.	Enhancement in collaborative learning is done through, group assignments that will be given to			
	encourage students to work with classmates to discuss and complete homework assignments			
6.	Students have to study any five research papers related to specific topic and prepare/present power			
	point presentation			
	Brief report on 'Environmental, health and ethical			

 10. Write a report on innovations in fuel cell technology in current year. 11. Learning on performance characteristics of fuel cell power plant and its components. 12. Identify the operational issues and challenges for all major types of fuel cells and give the presentation on it. 13. Conducting open-book class test. 11. In addition to these above stated assignments concerned faculty member may design his/her own assignments Term Work: Term work will consist of the Seminar : Seminar should be based on theory. Students may undertake studies in design and development, a synthesis, construction and fabrication of equipment, treatment plants. Critical review on prod system generation of new concept, idea and improvement in existing process related to subject. Ter should be based on the technical report on these studies carried out by individual or small gistudents. Text Books/ References: 1. B. Viswanathan, M. Aulice Scibioh, "Fuel Cells: Principles and Applications", CRC P edition, 2008. 2. James Larminie, Andrew Dicks, "Fuel Cell Systems Explained", 2nd Edition, John Wiley & Ltd, New York, 2003 		Technology.
 e) Current scientific and technical advances Electrochemical Cell Vs Fuel Cell Preparation of a brief report on applicability of fuel cells in chemical engineering operations Write a report on innovations in fuel cell technology in current year. Learning on performance characteristics of fuel cell power plant and its components. Identify the operational issues and challenges for all major types of fuel cells and give the presentation on it. Conducting open-book class test. In addition to these above stated assignments concerned faculty member may design his/her own assignments Term Work: Term work will consist of the Seminar : Seminar should be based on theory. Students may undertake studies in design and development, a synthesis, construction and fabrication of equipment, treatment plants. Critical review on prod system generation of new concept, idea and improvement in existing process related to subject. Ter should be based on the technical report on these studies carried out by individual or small gr students. Issue to the second of the second o	8.	Group discussions on any/all of the following topics:
f) Electrochemical Cell Vs Fuel Cell 9. Preparation of a brief report on applicability of fuel cells in chemical engineering operations 10. Write a report on innovations in fuel cell technology in current year. 11. Learning on performance characteristics of fuel cell power plant and its components. 12. Identify the operational issues and challenges for all major types of fuel cells and give the presentation on it. 13. Conducting open-book class test. In addition to these above stated assignments concerned faculty member may design his/her own assignments Term Work: Term work will consist of the Seminar : Seminar should be based on theory. Students may undertake studies in design and development, a synthesis, construction and fabrication of equipment, treatment plants. Critical review on prod system generation of new concept, idea and improvement in existing process related to subject. Ter should be based on the technical report on these studies carried out by individual or small gistudents. Image: Term Work: Term Work: Term Work: Image: Seminar should be based on theory. Students may undertake studies in design and development, a synthesis, construction and fabrication of equipment, treatment plants. Critical review on prod system generation of new concept, idea and improvement in existing process related to subject. Ter should be based on the technical report on these studies		d) Classification of Fuel Cells.
 9. Preparation of a brief report on applicability of fuel cells in chemical engineering operations 10. Write a report on innovations in fuel cell technology in current year. 11. Learning on performance characteristics of fuel cell power plant and its components. 12. Identify the operational issues and challenges for all major types of fuel cells and give the presentation on it. 13. Conducting open-book class test. 11. In addition to these above stated assignments concerned faculty member may design his/her own assignments Term Work: Term Work: Seminar should be based on theory. Students may undertake studies in design and development, a synthesis, construction and fabrication of equipment, treatment plants. Critical review on prod system generation of new concept, idea and improvement in existing process related to subject. Ter should be based on the technical report on these studies carried out by individual or small gr students. 14. B. Viswanathan, M. Aulice Scibioh, "Fuel Cells: Principles and Applications", CRC P edition, 2008. 2. James Larminie, Andrew Dicks, "Fuel Cell Systems Explained", 2nd Edition, John Wiley & Ltd, New York, 2003 3. O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 2000 4. "Fuel cell: a handbook", U S Department of energy. 		e) Current scientific and technical advances
10. Write a report on innovations in fuel cell technology in current year. 11. Learning on performance characteristics of fuel cell power plant and its components. 12. Identify the operational issues and challenges for all major types of fuel cells and give the presentation on it. 13. Conducting open-book class test. In addition to these above stated assignments concerned faculty member may design his/her own assignments Term Work: Term Work: Seminar should be based on theory. Students may undertake studies in design and development, a synthesis, construction and fabrication of equipment, treatment plants. Critical review on prod system generation of new concept, idea and improvement in existing process related to subject. Ter should be based on the technical report on these studies carried out by individual or small gis students. Text Books/ References: 1. B. Viswanathan, M. Aulice Scibioh, "Fuel Cells: Principles and Applications", CRC P edition, 2008. 2. James Larminie, Andrew Dicks, "Fuel Cell Systems Explained", 2nd Edition, John Wiley & Ltd, New York, 2003 3. O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 2000 4. "Fuel cell: a handbook", U S Department of energy.		f) Electrochemical Cell Vs Fuel Cell
 Learning on performance characteristics of fuel cell power plant and its components. Identify the operational issues and challenges for all major types of fuel cells and give the presentation on it. Conducting open-book class test. In addition to these above stated assignments concerned faculty member may design his/her own assignments Term Work: Term work will consist of the Seminar : Seminar should be based on theory. Students may undertake studies in design and development, a synthesis, construction and fabrication of equipment, treatment plants. Critical review on prod system generation of new concept, idea and improvement in existing process related to subject. Ter should be based on the technical report on these studies carried out by individual or small gr students. Text Books/ References: I. B. Viswanathan, M. Aulice Scibioh, "Fuel Cells: Principles and Applications", CRC P edition, 2008. 2. James Larminie, Andrew Dicks, "Fuel Cell Systems Explained", 2nd Edition, John Wiley of Ltd, New York, 2003 3. O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 2000	9.	Preparation of a brief report on applicability of fuel cells in chemical engineering operations
 12. Identify the operational issues and challenges for all major types of fuel cells and give the presentation on it. 13. Conducting open-book class test. In addition to these above stated assignments concerned faculty member may design his/her own assignments Term Work: Term work will consist of the Seminar : Seminar should be based on theory. Students may undertake studies in design and development, a synthesis, construction and fabrication of equipment, treatment plants. Critical review on prod system generation of new concept, idea and improvement in existing process related to subject. Ter should be based on the technical report on these studies carried out by individual or small gr students. Text Books/ References: 1. B. Viswanathan, M. Aulice Scibioh, "Fuel Cells: Principles and Applications", CRC P edition, 2008. 2. James Larminie, Andrew Dicks, "Fuel Cell Systems Explained", 2nd Edition, John Wiley of Ltd, New York, 2003 3. O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 2000 4. "Fuel cell: a handbook", U S Department of energy. 	10.	Write a report on innovations in fuel cell technology in current year.
presentation on it. 13. Conducting open-book class test. In addition to these above stated assignments concerned faculty member may design his/her own assignments Term Work: Term Work: Term work will consist of the Seminar : Seminar should be based on theory. Students may undertake studies in design and development, a synthesis, construction and fabrication of equipment, treatment plants. Critical review on prod system generation of new concept, idea and improvement in existing process related to subject. Ter should be based on the technical report on these studies carried out by individual or small ge students. Text Books/ References: 1. B. Viswanathan, M. Aulice Scibioh, "Fuel Cells: Principles and Applications", CRC P edition, 2008. 2. James Larminie, Andrew Dicks, "Fuel Cell Systems Explained", 2nd Edition, John Wiley & Ltd, New York, 2003 3. O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 2006 4. "Fuel cell: a handbook", U S Department of energy.	11.	Learning on performance characteristics of fuel cell power plant and its components.
13. Conducting open-book class test. In addition to these above stated assignments concerned faculty member may design his/her own assignments Term Work: Term work will consist of the Seminar : Seminar should be based on theory. Students may undertake studies in design and development, a synthesis, construction and fabrication of equipment, treatment plants. Critical review on prod system generation of new concept, idea and improvement in existing process related to subject. Ter should be based on the technical report on these studies carried out by individual or small ge students. Text Books/ References: 1. B. Viswanathan, M. Aulice Scibioh, "Fuel Cells: Principles and Applications", CRC P edition, 2008. 2. James Larminie, Andrew Dicks, "Fuel Cell Systems Explained", 2nd Edition, John Wiley & Ltd, New York, 2003 3. O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 2006 4. "Fuel cell: a handbook", U S Department of energy.	12.	Identify the operational issues and challenges for all major types of fuel cells and give the
In addition to these above stated assignments concerned faculty member may design his/her own assignments Term Work: Term work will consist of the Seminar : Seminar should be based on theory. Students may undertake studies in design and development, a synthesis, construction and fabrication of equipment, treatment plants. Critical review on prod system generation of new concept, idea and improvement in existing process related to subject. Ter should be based on the technical report on these studies carried out by individual or small ge students. Text Books/ References: B. Viswanathan, M. Aulice Scibioh, "Fuel Cells: Principles and Applications", CRC P edition, 2008. James Larminie, Andrew Dicks, "Fuel Cell Systems Explained", 2nd Edition, John Wiley of Ltd, New York, 2003 O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 2000 "Fuel cell: a handbook", U S Department of energy.		presentation on it.
assignments Term Work: Term Work will consist of the Seminar : Seminar should be based on theory. Students may undertake studies in design and development, a synthesis, construction and fabrication of equipment, treatment plants. Critical review on prod system generation of new concept, idea and improvement in existing process related to subject. Ter should be based on the technical report on these studies carried out by individual or small gistudents. Tert Work: Text Works/ References: 1. B. Viswanathan, M. Aulice Scibioh, "Fuel Cells: Principles and Applications", CRC P edition, 2008. 2. James Larminie, Andrew Dicks, "Fuel Cell Systems Explained", 2nd Edition, John Wiley & Ltd, New York, 2003 3. O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 2000 4. "Fuel cell: a handbook", U S Department of energy.	13.	Conducting open-book class test.
Term Work: Term work will consist of the Seminar : Seminar should be based on theory. Students may undertake studies in design and development, a synthesis, construction and fabrication of equipment, treatment plants. Critical review on prodisystem generation of new concept, idea and improvement in existing process related to subject. Tere should be based on the technical report on these studies carried out by individual or small gristudents. Text Books/ References: 1. B. Viswanathan, M. Aulice Scibioh, "Fuel Cells: Principles and Applications", CRC P edition, 2008. 2. James Larminie, Andrew Dicks, "Fuel Cell Systems Explained", 2nd Edition, John Wiley & Ltd, New York, 2003 3. O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 2000 4. "Fuel cell: a handbook", U S Department of energy.	In addi	tion to these above stated assignments concerned faculty member may design his/her own
Term work will consist of the Seminar : Seminar should be based on theory. Students may undertake studies in design and development, a synthesis, construction and fabrication of equipment, treatment plants. Critical review on prod system generation of new concept, idea and improvement in existing process related to subject. Ter should be based on the technical report on these studies carried out by individual or small gestudents. Text Books/ References: 1. B. Viswanathan, M. Aulice Scibioh, "Fuel Cells: Principles and Applications", CRC P edition, 2008. 2. James Larminie, Andrew Dicks, "Fuel Cell Systems Explained", 2nd Edition, John Wiley & Ltd, New York, 2003 3. O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 2000 4. "Fuel cell: a handbook", U S Department of energy.	assignr	nents
Term work will consist of the Seminar : Seminar should be based on theory. Students may undertake studies in design and development, a synthesis, construction and fabrication of equipment, treatment plants. Critical review on prod system generation of new concept, idea and improvement in existing process related to subject. Ter should be based on the technical report on these studies carried out by individual or small gestudents. Text Books/ References: 1. B. Viswanathan, M. Aulice Scibioh, "Fuel Cells: Principles and Applications", CRC P edition, 2008. 2. James Larminie, Andrew Dicks, "Fuel Cell Systems Explained", 2nd Edition, John Wiley & Ltd, New York, 2003 3. O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 2000 4. "Fuel cell: a handbook", U S Department of energy.		
 Seminar should be based on theory. Students may undertake studies in design and development, a synthesis, construction and fabrication of equipment, treatment plants. Critical review on prod system generation of new concept, idea and improvement in existing process related to subject. Ter should be based on the technical report on these studies carried out by individual or small gr students. Text Books/ References: B. Viswanathan, M. Aulice Scibioh, "Fuel Cells: Principles and Applications", CRC P edition, 2008. James Larminie, Andrew Dicks, "Fuel Cell Systems Explained", 2nd Edition, John Wiley & Ltd, New York, 2003 O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 2006 "Fuel cell: a handbook", U S Department of energy. 	Term	Work:
 synthesis, construction and fabrication of equipment, treatment plants. Critical review on prodisystem generation of new concept, idea and improvement in existing process related to subject. Terr should be based on the technical report on these studies carried out by individual or small gestudents. Text Books/ References: B. Viswanathan, M. Aulice Scibioh, "Fuel Cells: Principles and Applications", CRC P edition, 2008. James Larminie, Andrew Dicks, "Fuel Cell Systems Explained", 2nd Edition, John Wiley & Ltd, New York, 2003 O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 2006 "Fuel cell: a handbook", U S Department of energy. 	Term v	vork will consist of the Seminar :
 system generation of new concept, idea and improvement in existing process related to subject. Ter should be based on the technical report on these studies carried out by individual or small ge students. Text Books/ References: B. Viswanathan, M. Aulice Scibioh, "Fuel Cells: Principles and Applications", CRC P edition, 2008. James Larminie, Andrew Dicks, "Fuel Cell Systems Explained", 2nd Edition, John Wiley & Ltd, New York, 2003 O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 2006 "Fuel cell: a handbook", U S Department of energy. 		Seminar should be based on theory. Students may undertake studies in design and development, analysis,
 should be based on the technical report on these studies carried out by individual or small gistudents. Text Books/ References: B. Viswanathan, M. Aulice Scibioh, "Fuel Cells: Principles and Applications", CRC P edition, 2008. James Larminie, Andrew Dicks, "Fuel Cell Systems Explained", 2nd Edition, John Wiley & Ltd, New York, 2003 O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 2006 "Fuel cell: a handbook", U S Department of energy. 		synthesis, construction and fabrication of equipment, treatment plants. Critical review on product and
students. Text Books/ References: 1. B. Viswanathan, M. Aulice Scibioh, "Fuel Cells: Principles and Applications", CRC P edition, 2008. 2. James Larminie, Andrew Dicks, "Fuel Cell Systems Explained", 2nd Edition, John Wiley & Ltd, New York, 2003 3. O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 2000 4. "Fuel cell: a handbook", U S Department of energy.		system generation of new concept, idea and improvement in existing process related to subject. Term work
Text Books/ References: 1. B. Viswanathan, M. Aulice Scibioh, "Fuel Cells: Principles and Applications", CRC P edition, 2008. 2. James Larminie, Andrew Dicks, "Fuel Cell Systems Explained", 2nd Edition, John Wiley & Ltd, New York, 2003 3. O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 2006 4. "Fuel cell: a handbook", U S Department of energy.		should be based on the technical report on these studies carried out by individual or small group of
 B. Viswanathan, M. Aulice Scibioh, "Fuel Cells: Principles and Applications", CRC P edition, 2008. James Larminie, Andrew Dicks, "Fuel Cell Systems Explained", 2nd Edition, John Wiley & Ltd, New York, 2003 O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 2006 "Fuel cell: a handbook", U S Department of energy. 		students.
 B. Viswanathan, M. Aulice Scibioh, "Fuel Cells: Principles and Applications", CRC P edition, 2008. James Larminie, Andrew Dicks, "Fuel Cell Systems Explained", 2nd Edition, John Wiley & Ltd, New York, 2003 O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 2006 "Fuel cell: a handbook", U S Department of energy. 		
 edition, 2008. 2. James Larminie, Andrew Dicks, "Fuel Cell Systems Explained", 2nd Edition, John Wiley & Ltd, New York, 2003 3. O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 2006 4. "Fuel cell: a handbook", U S Department of energy. 	Text B	ooks/ References:
 James Larminie, Andrew Dicks, "Fuel Cell Systems Explained", 2nd Edition, John Wiley & Ltd, New York, 2003 O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 2006 "Fuel cell: a handbook", U S Department of energy. 	1.	B. Viswanathan, M. Aulice Scibioh, "Fuel Cells: Principles and Applications", CRC Press, 1
Ltd, New York, 20033.O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 20064."Fuel cell: a handbook", U S Department of energy.		edition, 2008.
 O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 2006 "Fuel cell: a handbook", U S Department of energy. 	2.	James Larminie, Andrew Dicks, "Fuel Cell Systems Explained", 2nd Edition, John Wiley & Sons
4. "Fuel cell: a handbook", U S Department of energy.		Ltd, New York, 2003
	3.	O'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, "Fuel Cell Fundamentals", Wiley, NY, 2006
5. Bokris John O'm, Srinivasan S., "Fuel cells-their electrochemistry", McGraw Hill 1969.	4.	"Fuel cell: a handbook", U S Department of energy.
	5.	Bokris John O'm, Srinivasan S., "Fuel cells-their electrochemistry", McGraw Hill 1969.
6. Appleby A.J. Fralkes F. R., "Fuel cell handbook", Van Nostrand Reinhold, 1989	6.	Appleby A.J. Fralkes F. R., "Fuel cell handbook", Van Nostrand Reinhold, 1989

7.	Basu, S. (Ed) "Fuel Cell S	Science and Technology", Springer, N.Y. 2007	
8.	Liu, H., "Principles of fuel cells", Taylor & Francis, N.Y. 2006		
	!		
Sylla	Syllabus for Unit Test:		
Unit 7	Unit Test - I UNIT– I, II, and III		
Unit 7	Unit Test - II UNIT– IV, V, and VI		

		Elective III: Membrane Separation		
Designat	tion: Elective			
Course	Pre-requisite	:		
1.	Basic chem	stry, Physical chemistry, Mass transfer, Fluid flow of	operations, Chemical	Engineering
1.	Thermodyn	imics		
TEACH	ING SCHEN	E: EXAMINATION SCHEME:	CREDITS ALL	OTTED:
Lectures	: 3Hours/Wee	k End Semester Examination: 60 marks	Theory : 03	
Term wo	ork: 2 Hour/W	eek Continuous Assessment: 40 marks	Tutorial : 01	
		Term Work: 50 marks		
		Total Marks: 150 marks		
		1	[
Course	Outcomes:			
1.	Explain bas	cs of membrane and select proper material depending	upon application	
2.	Explain the	methods of membrane preparation and characterization	1	
3.	Determine s	uitable process for size based separation and explain it	s transport mechanisi	n
4	Understand the transport through non-porous membranes and define membranes for desired			
4.	application			
5.	Explain bas	cs and preparation of membrane for other specialized	membrane processes	
6.	Design suita	ble module and parameters for the desired application		
	<u> </u>			
		Topics covered		
	Intro	duction and Membrane Materials		
	Introduction, historical development of membrane processes, definition of			
	membrane, permeation, retention and selectivity, membrane processes, their			
UNIT-I	I categorization, material for membrane preparation, polymeric material,		(06 Hours)	
	inorg	anic materials, mechanical, thermal and chemical sta	bility of membrane	
	based	on material, choice of polymer for membrane pr	eparation based on	
	appli	cation		

	Membrane Preparation and Characterizations	
	Preparation of synthetic membranes: phase inversion membranes, preparation	
	of composite membranes, preparation of inorganic membranes	
UNIT-II	Characterization: Porous membranes - electron microscopy, atomic force	(06 Hours)
	microscopy, mercury intrusion, bubble point method, permeability method,	
	solute rejection characteristic; non-porous membranes - permeability, surface	
	analysis, wide angle X-ray, DCS/DTA, density measurement	
	Processes using porous membranes	
	Transport mechanism in porous membranes - Knudsen flow, friction model,	
	sieving mechanism	
UNIT-III	Processes: Microfiltration - membranes details, characteristics, industrial	(06 Hours)
	applications; Ultrafiltration - membranes details, characteristics, industrial	
	applications; Nano-filtration - membranes details, characteristics, industrial	
	applications.	
	Solution-diffusion based membrane processes	
	Transport mechanism - Solution-diffusion mechanism, solubility, diffusivity,	
	effect of temperature, interaction polymer crystallinity of solubility and	
UNIT-IV	diffusivity; Free volume theory	(06 Hours)
	Processes: Reverse osmosis - membranes details, characteristics, industrial	(00 110013)
	applications; Gas separation - membranes details, characteristics, industrial	
	applications; Pervaporation - membranes details, characteristics, industrial	
	applications	
	Other membrane processes	
	Dialysis - membranes details, their preparation, characteristics, transport	
	mechanism, industrial applications; Electrodialysis - membranes details, their	
	preparation, characteristics, industrial applications; Membrane distillation -	
UNIT-V	membranes details, their preparation, characteristics, industrial applications; Membrane distillation -	(06 Hours)
UNIT-V		(06 Hours)
UNIT-V	membranes details, their preparation, characteristics, industrial applications;	(06 Hours)
UNIT-V	membranes details, their preparation, characteristics, industrial applications; Membrane bioreactor - membranes details, their preparation, characteristics,	(06 Hours)
UNIT-V	membranes details, their preparation, characteristics, industrial applications; Membrane bioreactor - membranes details, their preparation, characteristics, industrial applications; Liquid membranes - membranes details, ionic liquids,	(06 Hours)

	Selection of process depending upon applications, plate and frame module,
	spiral wound module, tubular module, capillary module, hollow fiber module,
	comparison between module configuration, system design, cross flow
	operations, hybrid dead end/cross flow operations, cascade operations, Process
	parameters, Energy requirements
Term w	ork/Practical:
1.	Preparation of microfiltration membranes by phase inversion and their transport analysis.
2.	Preparation of UF membranes and their transport analysis
3.	Study of prepared porous membranes for bubble point analysis
4.	Study of porous membranes for rejection analysis
5.	Surface characterization of membrane by instrumental methods
6.	Preparation of asymmetrically skinned membrane and analyze it for pervaporation
7.	Preparation of thin film composite membranes and analyze its transport properties
8.	Preparation of symmetric membrane and analyze its transport and rejection properties
9.	Study variation in fouling characteristics between dead end and cross flow method
10.	Study separation characteristics of reverse osmosis membranes
11.	Preparation of hollow fiber membranes and study its permeation characteristics
12.	Study dialysis /electrodialysis membrane transport characteristics
13.	Study preparation of membrane bio-reactor and its effect of fermentation system
In addit	ion to these above stated term-work concern faculty member may design his/her own term-work or
practica	ls.
Assignr	
1.	Detail of membrane material, preparation, characterization, module and process design for anyone
	application
2.	Technical interview based on knowledge of membrane technology.
3.	Students have to study any five NPTEL/you-tube videos related to membrane technology and
	prepare/present power point presentation.
4.	Group discussions on membrane science and technology related topics.
5.	Prepare a report on innovations in membrane technology and their practical importance.

6.	Conducting open-book class test.			
7.	Conducting surprise Multiple choi	ce questions (MCQs) test for students		
8.	Students have to study any five r	esearch papers related to specific topic and prepare/present power		
	point presentation			
9.	With the help of this subject kno	wledge, write a report on how you would apply your concepts in		
	industry.			
10.	Case study on emerging trends in	process/product innovation considering membrane technology.		
11.	Students have to visit chemical in	dustry and make a detailed report on membrane technologies used		
	in the process.			
12.	Write a report on your visit to rese	arch and development laboratory of national/international repute.		
13.	Write a report on membrane techn	ologies for addressing the problems of Water and Energy.		
In addit	lition to these above stated assignment	s concern faculty member may design his/her own assignments.		
Refere	rences/Text Books:			
1.	Basic principle of membrane technology Marcel Mulder, Kluwer Academic Press			
2.	Membrane technology and application	tions, Richard W. Baker, John Wiley and Sons, Ltd.		
3.	Handbook of industrial membrane technology, Mark C. Porter (Ed.), Noyes Publications.			
4.	Membrane separation systems -	Membrane separation systems - recent developments and future directions, R. W. Baker, E. L.		
4.	Cussler, W. Eykamp, W. J. Koros, R. L. Riley, H. Strathman, Noyes Data Corporation			
5.	Membrane technology in the chem	nical industry, S. P. Nunes, KV. Peinemann (Eds.), Wiley-VCH		
Э.	Verlag GMBH			
Syllabu	bus for Unit Test:			
Unit Te	Test -I UNI	T – I ,II,III		
Unit To	Test -II UNI	T – IV,V,VI		

ELECTIVE III: PETROLEUM REFINERY ENGINEERING

Designation: Elective

Course Pre-requisites:

Students should have basic knowledge of

1 Chemical Process Industry

2 Mass Transfer

TEACHING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:
Lectures: 3 Hours/Week	End Semester Examination: 60 Marks	Theory: 03
Practical : 2 Hour /Week	Unit Test: 20 Marks	Practical: 01
Total : 5Hours/Week	Continuous Assessment: 20 Marks	Total credits: 04
	Termwork / Oral :50 Marks	
	Total :150 Marks	

Course Outcomes:

After completion of the course students would be able to

1. Know the composition of crude oil and its products, along with its properties and characterization methods.

2. Demonstrate knowledge of petroleum products, quality control and understand processing of crude oil.

3. Understand the thermal and catalytic cracking process.

4. Learn the process of catalytic reforming, Hydrotreating and Hydrocracking.

5. Get conversant with the process of purification and fractionation of crude oil.

6. Analyze theoretical and practice skills in environmental issues of petroleum refinery.

	Topics covered	
	Introduction:	
	Introduction to petroleum refinery, Classification of Crude oil,	
UNIT-I	Characterization of crude oil, Composition of crude Physical properties	(06 Hours)
UNIT	L6: Crude oil; analysis and distillation, Introduction to refinery "feedstock/s"	(00 110013)
	and refinery products. ASTM nomenclature (ASTM test numbers and their	
	meaning)Introduction to various codes required for petroleum industry	

	Evaluation of crude oil properties and Design of crude oil distillation		
	column: Dehydration and desalting of crude. Crude Assay ASTM TBP		
UNIT		(06 Hours)	
	boiling points and mid percent curves Evaluation of properties of crude oil		
	and its fractions. Design concept of crude oil distillation column design.		
	Thermal and Catalytic cracking:		
UNIT	Coking and thermal process, delayed coking, Catalytic cracking, cracking	(06 Hours)	
III	reactions, cracking feedstock, Effect of process, FCC cracking, catalyst ,New	(00 110013)	
	designs for fluidized bed catalytic cracking		
	Catalytic Reforming :		
UNIT	Objective and application of catalytic reforming, process reforming Catalysts,		
IV	Reformer feed reforming reactor design continuous and semi regenerative	(06Hours)	
	process. Hydrotreating and Hydrocracking reactions.		
	Iso merization, Alkylation and Polymerization:		
	Isomerization process, Reactions, Effects of process variables. Alkylation		
UNIT	V process, Feedstock, reactions, products, catalysts and effect of process	(06 Hours)	
	variables. Polymerization: Objectives, process, Reactions, catalysts and effect		
	of process variables. Visbreaking		
	Environmental issues and New Trends in petroleum		
	refinery operations:		
UNIT	Ecological consideration in petroleum refinery, Waste water treatment,	(06 Hours)	
VI	control of air pollution, New trends in refinery, Alternative energy sources.		
	Safety aspects in petroleum industry		
Assign	ments		
1.			
2.	Discover the methods used to create clean and reformulated fuels		
3.	Evaluate the use of catalysts in petroleum refining		
4.	Estimate refinery CAPEX and OPEX		
5.	Give power point presentation on vertical integration in petroleum industry		
6.	Learning on different areas of study in upstream, midstream and downstream industry.		
7.	Analyze worldwide distribution of oil and gas reserves in current year.		
/.	Analyze worldwide distribution of on and gas reserves in current year.		

8.	Understand basic procedures and role of all fundamental systems used in petroleum drilling
9.	Apply a critical-thinking and problem-solving approach towards the principles of petroleum
	engineering.
10.	Specify materials for construction and estimate the cost of investments for crude pil distillation
	column.
11.	Write a technical report on your visit to a petroleum refinery.
12.	Give power point presentation on knowledge of safety and pollution control in the refining
	industries.
13.	Group discussion on the recent advances in petroleum refinery processes.
14.	Make a complete chart of operations involved in petroleum industry.
15.	Assess the economic environment of the petroleum industry.
In ad	dition to these above stated assignments concerned faculty member may design his/her own
assign	ments
Term	Work:
Term	work will consist of the Seminar :
	Seminar should be based on theory. Students may undertake studies in design and development,
	analysis, synthesis, construction and fabrication of equipment, treatment plants. Critical review on
	product and system generation of new concept, idea and improvement in existing process related to
	subject. Termwork should be based on the technical report on these studies carried out by individual
	or small group of students.
Text]	Books/References:
1.	B.K.Bhaskar Rao., "Modern Petroleum Refining Processes", 2ndEd., Oxford and IBH publishing
	Co. Pvt. Ltd., New Delhi 1990.
2.	W.C. Edmister "Applied Hydrocarbon Thermodynamics", Gulf Publishing, Houstan, Texas, 1961.
3.	Gas Production Engineering" S.Kumar Gulf publishing Co., 1987.
4.	Petroleum Exploration Hand Book by Moody, G.B.
5.	standard Handbook of petroleum and Natural Gas Engineering. 2 nd Edition. William C Lyons, Gary
	C Plisga. Gulf Profession.
6.	W.L. Nelson, "Petroleum Refinery Engineering", McGraw Hill, 1964.

Syllabus for Unit Test:	
Unit Test -I	UNIT – I ,II,III
Unit Test -II	UNIT – IV,V,VI

			Elective IV: BIO-SEPARATION		
Des	ignation	n: Elective			
Cou	irse Pre-	-requisites:			
Stuc	dents sh	ould have basic knowle	dge of		
1	Basic b	iology			
2	Analyti	cal chemistry and techn	iques.		
<u>TE</u>	ACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS A	ALLOTTED:
Lec	tures: 3	Hours/Week	End Semester Examination: 60 Marks	Theory: 03	
Prac	ctical : 2	2 Hour /Week	Unit Test: 20 Marks	Practical: 01	
Tota	al ::	5Hours/Week	Continuous Assessment: 20 Marks	Total credits	: 04
			Term work / Oral :50 Marks		
			Total :150 Marks		
Cou	ırse Ou	tcomes:			
Afte	er comp	letion of the course stud	lents would be able to		
1	Defin	e concept of bio-separa	tion, physico-chemical basis of bio-separatio	on.	
2	Expla	lain low resolution bio-separation techniques.			
3	Descr	cribe high resolution bio-separation techniques.			
4	Discu	ss separation technique	s like precipitation, crystallization, etc.		
5	Recog	gnize the emerging bio	-separation techniques like expanded-bed	chromatograph	ny, hybrid bio-
	separa	ations, etc.			
6	Apply	bio-separation knowle	dge for purification of β amylase, aspartic ac	cid, etc.	
			Topics covered		
		INTRODUCTION 1	O BIOSEPARATION:		
UN	IT_I	An overview of bio-s	eparation, Separation of cells and other insolubles from		(06 Hours)
UNIT-I		fermented broth. bioproduct purification, characteristics of biological mixtures,		(00 110013)	
		physico-chemical basis of bio-separation.			
		LOW RESOLUTIO	N BIO-SEPARATION TECHNIQUES:		
UN	IT-II	Cell disruption, Cent	rifugation, Liquid-liquid extraction, Leachir	ng, Filtration,	(06 Hours)
		Supercritical fluid e	xtraction, Micro-filtration, Ultra-filtration,	Adsorption,	
UN	IT-II				(0

	Sedimentation			
	HIGH RESOLUTION BIO-SEPARATION TECHNIQUES:			
	Ultra-centrifugation, Different electrophoresis techniques viz. Isoelectric	(06 Hours)		
UNIT-	focusing, Affinity separation, Chromatographic techniques viz. Paper, Gel; Ion			
	exchange, Affinity, GLC, HPLC. Dialysis.			
	OTHER SEPARATION TECHNIQUES:			
	Zone refining, Molecular sieves, Adductive crystallization, Reactive			
UNIT-	IV extraction, Precipitation method using ammonium sulfate, organic solvents,	(06 Hours)		
	high molecular weight polymers, Reverse osmosis, Foam separation., Aqueous			
	two phase systems,			
	EMERGING BIO-SEPARATION TECHNIQUES:			
UNIT-	Membrane and monolith chromatography, Expanded-bed chromatography,	(06 Hours)		
UNII-	High-resolution ultrafiltration, Hybrid bio-separations, Introduction to SEP box			
	and Hyphenated techniques.			
	APPLICATIONS OF BIO-SEPARATIONS -CASE STUDIES:			
UNIT-	VI Purification of β amylase, aspartic acid, insulin; Food and Beverages: Beer,	(06 Hours)		
	Citric acid; Bio-chemicals: Butanol.			
Assign	ments:			
1.	Give fifteen minutes presentation (seminar) on particular topic and prepare a report.			
2.	Prepare a mini report of any topic given above.			
3.	Write a report on the recent advances in chromatographic processes with reference to the current			
	year.			
4.	Prepare a model for any of the topic given above.			
5.	Evaluate efficiencies of different chromatographic techniques.			
6.	With the help of this subject knowledge, write a guideline report on how you would apply your			
	concepts in industry.			
7.	Search out some industries related to bio-separation.			
8.	Write a technical report on your visit to a process industry.			

9.	Technical interview based on the knowledge of analytical techniques.
10.	List out all the principles of the analytical techniques.
11.	Perform any one chromatographic technique.
12.	Find out different types of proteins with structure.
13.	Prepare a report on downstream processing.
In addi	tion to these above stated assignments concerned faculty member may design his/her own
assignr	nents.
Term	Work:
Term y	work will consist of the experiments listed below, out of which any eight experiments are to be
perform	ned in laboratory by the students.
1.	Gas chromatography.
2.	Study of membrane separation and its application in industry.
3.	Study of sedimentation and its application in industry.
4	Study of reactive extraction.
5.	Material analysis using paper chromatography
6.	Study of high-resolution ultrafiltration.
7.	Study of gel electrophoresis.
8.	To study molecular sieves.
9.	To estimate efficiency of Centrifugation.
10.	Study of adductive crystallization.
In add	lition to these above stated experiments concerned faculty member may design his/her own
experin	ments related to course.
Text B	Books/References:
1	Belter P A, Cussler E L, and Wei Shou Hu, "Bio-separation-Downstream Processing for
	Biotechnology", Wiley India Pvt. Ltd., 2011.
2	Prasad N K, "Downstream Process Technology-A New Horizon in Biotechnology", Prentice Hall of
	India, New Delhi, 2012.
3	Pauline M Doran "Bioprocess Engineering Principles", Academic Press, London, USA, 2012.
4	B Sivasankar, "Bio-separations: Principles and Techniques", Phi Learning Pvt. Ltd., 2009.

5	Ajay Kumar, Abishek Awasthi "Bio-separation Engineering: Comprehensive DSP Volumen" I.K		
	International Publishing House Pvt. Ltd., New Delhi, 2009.		
Syllab	Syllabus for Unit Test:		
Unit T	Unit Test -I UNIT – I ,II,III		
Unit T	Unit Test -II UNIT – IV,V,VI		

ELECTIVE IV: ENERGY ENGINEERING

Designation: Elective

Course Pre-requisites:

Students should have basic knowledge of

1 Unit operations, Heat Transfer, Mass Transfer

2 Basic Mathematics and Numerical Techniques.

TEACHI	NG SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:
Lectures: 3 Hours/Week		End Semester Examination: 60 Marks	Theory: 03
		Unit Test: 20 Marks	
Total	: 3Hours/Week	Continuous Assessment: 20 Marks	Total credits: 03
		Total :100 Marks	

Course Outcomes:

After completion of the course students would be able to

- **1.** Know the basic energy sources *viz* conventional and non conventional.
- 2. Evaluate Energy balance and efficiency of any thermal system.
- **3.** Understand the basic need for pinch analysis and HEN.
- **4.** Formulate the problem for given energy system.
- 5. Model the given energy system and optimize it.

6. Understand different applications of non conventional energy systems.

Topics covered

Basic Energy Sources :			
Fossil fuels, Nuclear fuels. Conventional & Renewable Energy			
Energy Sources: prospecting, extraction and resource assessment and their			
peculiar characteristics. Direct use of primary energy sources, Conversion of	(06Hours)		
primary into secondary energy sources such as Electricity, Hydrogen, And			
Nuclear energy etc. Energy Conversion through fission and fusion, Nuclear			
power generation etc.			
	Fossil fuels, Nuclear fuels. Conventional & Renewable Energy Energy Sources: prospecting, extraction and resource assessment and their peculiar characteristics. Direct use of primary energy sources, Conversion of primary into secondary energy sources such as Electricity, Hydrogen, And Nuclear energy etc. Energy Conversion through fission and fusion, Nuclear		

	Energy Management part I: Importance of energy management. Energy				
	auditing: methodology, analysis of past trends (plant data), closing the energy				
UNIT-II	balance, laws of thermodynamics, measurements, portable and on line	(06 Hours)			
	instruments. Steam Systems: Boiler -efficiency testing, excess air control,	(************			
	Steam distribution & use- steam traps, condensate recovery, flash steam				
	utilization. Thermal Insulation.				
	Energy Management part II Energy conservation in Pumps, Fans (flow				
UNIT-III	control), Compressed Air Systems, Refrigeration& air conditioning systems. (06 Hours				
UN11-111	Heatexchanger networking- concept of pinch, target setting, problem table	(00 110015)			
	approach, composite curves.				
	Energy Systems Analysis: Case studies of optimization in Energy systems				
UNIT-IV	problems. Dealing with uncertainty- probabilistic techniques. Trade-offs	(06 Hours)			
	between capital & energy using Pinch Analysis. Case studies				
	Application of Non-conventional energy systems in Industry: Solar energy				
UNIT-V	Applications, Wave Energy and Ocean Thermal Energy, Wind Energy,(06 Hours)				
	Biomass Energy, Energy from Waste.				
	Economic Analysis: Initial and annual cost, basic definitions, present worth	(0 (1])			
UNIT-VI	calculations, economic analysis of add on solar system, Energy audit	(06 Hours)			
Assignme	ents				
1. V	Vrite a report on the recent advances in Energy Efficiency.				
2. 0	Give fifteen minutes presentation (seminar) on particular topic and prepare a report.				
3. 0	Compare the industrial data for energy utilization used in 5 different industries.				
4. V	Vrite a report on your heat transfer equipments to minimize energy loss.				
5. P	Present a seminar on Pinch Technology and HEN.				
6. I	Present a seminar on thermal equipments involved in industry.				
7. 1	Prepare a model on non conventional energy sources and applications.				
8. V	Vrite a energy audit for any single industry.				
I					
Text Boo	ks/References:				
1. J.	Twidell and T. Weir, Renewable Energy Resources, E & F N Spon Ltd, London, 19	86.			
I					

2.	D. Y. Goswami, F. Kreith and J. F. Kreider, Principles of Solar Engineering, Taylor and Francis,			
	Philadelphia, 2000			
3.	L.C.Witte, P.S.Schmidt,	D.R.Brown, Industrial Energy Management and Utilisation, Hemisphere		
	Publ, Washington, 1988.			
4.	I.G.C.Dryden, Butterwor	ths, The Efficient Use of Energy, London, 1982		
5.	Freris L.L., Wind Energy	Conversion Systems, Prentice Hall 1990.		
6.	S.S.RaoOptimisation theory and applications, Wiley Eastern, 1990			
7.	Beveridge and Schechter, Optimisation Theory and Practice, Mcgraw Hill, 1970			
8.	Shenoy U. V., Heat Exchanger Network Synthesis: Processes Optimization by Energy			
9.	Fowler, J.M., Energy and the environment, 2nd Edn., McGraw Hill, New York, 1984			
Syllab	Syllabus for Unit Test:			
Unit T	'est -I	UNIT – I ,II,III		
Unit Test -II		UNIT – IV,V,VI		

ELECTIVE - IV: GREEN TECHNOLOGY

Designation: Elective

Course Pre-requisites:

Students should have basic knowledge of chemistry and pollution control.

TEACHING SCHEME:			EXAMINATION SCHEM	<u>1E:</u>	CREDITS ALLOTTED:	
Lect	ures	: 3 Hours/Week	End Semester Examination	: 60 Marks	Theory	: 03
Prac	tical	: 2 Hour /Week	Unit Test	: 20 Marks	Practical	: 01
Tota	.1	: 5 Hours/Week	Continuous Assessment	: 20 Marks	Total credits	: 04
			Term Work/Oral	: 50 Marks		
			Total	: 150Marks		
Cou	rse Outo	comes:	I			
Afte	r comple	tion of the course stu	idents will be able to:			
1.	Identify	the major environm	ental issues and describe the	need for green	technology.	
2.	Explair	green technology p	rinciples and protocols.			
3.	Identify	and explain the gree	en synthetic methods.			
4.	Explair	biochemical conver	sion and bio-photolysis.			
5.	Explair	n criteria for choo	osing appropriate green ei	nergy technolo	ogies, Green in	novation &
	sustaina	nability.				
6.	Explair	the green house eff	ects, global warming, carbon	footprint and v	ways to overcom	e them using
	green te	en technology.				
			Topics covered			
		Introduction and	need for green technology:			
		Overview of Major Environmental Issues, Global Environmental Issues. Air				
		Quality Issues. Water Quality Issues, Ecology, Natural Resources, Waste:				
UNI	T - I	Production, Preven	ntion, Problems and Source of waste, cost of Waste, Waste			(06 Hours)
UIN	minimization tech		nique, waste treatment and r	ecycling. Desc	ription of Risk.	(00 110013)
		Value of Risk Assessment in the Engineering Profession. Risk-Based				
		Environmental Lav	w. Risk Assessment Concep	pts. Hazard As	sessment, Risk	
		Characterization. I	Role of Industry, Governm	ent and Institu	itions in green	

	technology.		
	Green technology principals and protocols:		
	Importance, advantages and disadvantages of green technologies, factors		
	affecting green technologies, the twelve basic principles of green chemistry.		
UNIT - II	Sustainable development, atom economy, reduction of toxicity. Use of	(06 Hours	
	Renewable Feedstock, Reduction of Derivatives, Catalysis, Design for		
	Degradation, Real-time Analysis for Pollution Prevention, Inherently Safer		
	Chemistry for Accident Prevention.		
	Green synthetic methods:		
	Microwave synthesis, electro-organic synthesis, Design and development of		
UNIT - III	environmentally friendly chemical pathways: challenges and opportunities.	(06 Hours	
	Materials for green chemistry and technology: Catalysis, environmental		
	friendly catalysts, Bio-catalysis, biodegradable polymers, alternative solvents,		
	Biochemical conversion:		
UNIT - IV	Anaerobic digestion, alcohol production from biomass; Chemical conversion	(06 Hours	
UINII - IV	process: hydrolysis and hydrogenation; Biophotolysis: Hydrogen generation		
	from algae biological pathways; Storage and transportation; Applications		
	Green innovation & sustainability:		
	Criteria for choosing appropriate green energy technologies, life cycle cost;		
UNIT - V	the emerging trends – process/product innovation, Eco/green technologies for	(06 Hours	
01111 - 1	addressing the problems of Water, Energy, Health, Agriculture and		
	Biodiversity- WEHAB (eco-restoration/ phyto-remediation, ecological		
	sanitation, renewable energy technologies).		
	Green house effect and Global warming:		
	Greenhouse gas emissions, impacts, mitigation and adaptation, carbon credit,		
	carbon footprint ; future energy Systems- clean/green energy technologies;		
UNIT - VI	International agreements/conventions on energy and sustainability - United		
	Nations Framework Convention on Climate Change (UNFCC), Kyoto	1;	
	protocol; sustainable development, Environmental reporting and ISO 14001;		
	climate change business and ISO 14064; green financing; financial initiative		
	by UNEP	1	

Ter	m Work:
Terr	n work will consist of the seminars on the following topics.
1	Major Environmental Issues and need for green technology
2	Green technology principals and protocols
3	Green synthetic methods
4	Biochemical conversion and Biophotolysis
5	Green innovation & sustainability
6	Green house effect and Global warming
Assi	gnments:
1.	Technical interview based on knowledge of green technology.
2.	Students have to study any five NPTEL videos related to green technology and prepare/present
	power point presentation.
3.	Group discussions on any one of the following topics.
	a) Major Environmental Issues.
	b) Green innovation & sustainability.
	c) Global warming
4	Prepare a report on innovations in green technology and their practical importance.
5	Conducting open-book class test.
6	Conducting surprise Multiple choice questions (MCQs) test for students
7	Students have to study any five research papers related to specific topic and prepare/present power point presentation
8	With the help of this subject knowledge, write a report on how you would apply your concepts in industry.
9	Case study on emerging trends in process/product innovation considering green technology.
10	Students have to visit chemical industry and make a detailed report on green technologies used in the process.
11	Write a report on your visit to research and development laboratory of national/international repute.
12	Write a report on eco/green technologies for addressing the problems of Water and Energy.
13	Write a report on eco/green technologies for addressing the problems of Water, Energy, Health, Agriculture and Biodiversity (WEHAB).

In	addition	to	these	above	stated	assignments	concern	faculty	member	may	design	his/her	own
ass	signments.												

Te	Text Books/ References:							
1	Paul Anastas, John C.Warner, John Warner Joint; Green Chemistry: Theory & Practice New Edition;							
	Oxford University press, USA, 2000.							
2	2 Mukesh Doble and Anil Kumar Kruthiventi, Green Chemistry and Engine	eering, Elsevier, Burlington,						
	USA, 2007.	USA, 2007.						
3	Allen, D.T., Shonnard, D.R, Green Engineering: Environmentally Conscious Design of Chemical							
	Processes. Prentice Hall PTR 2002.							
4	Baird, C. and Cann, M., Environmental Chemistry, 4th Edition, W.H. Freeman and Company, New							
	York, 2008.							
5	Paul T. Anastas, Walter Leitner, Phillip G. Jessop, Chao-Jan Li, Peter Wasserscheid, Annegret Stark;							
	Handbook of Green Chemistry, 3 Volume set, Green solvents; Wiley-VCH.							
6	Paul T. Anastas, Istvan T. Horvath ; Green Chemistry for a sustainable future; Wiley-Blackwell							
	publishers, 2010.							
7	7 V.K. Ahluwalia, M. Kidwai; New Trends in Green Chemistry; Kluwer A	V.K. Ahluwalia, M. Kidwai; New Trends in Green Chemistry; Kluwer Academic Publishers.						
Syl	Syllabus for Unit Test:							
Un	Unit Test - I UNIT– I, II, III							
Un	Unit Test - II UNIT– IV, V, VI							